Communications
126.8, 128.3, 129.8, 130.8 (aromatic CH), 113.7, 125.6, 134.8, 135.8,
the Gaussian 03 adaptation of the NBO program (E. D.
Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO
Version 3.1). For the model complex 4M the following NPA
charges were calculated: + 1.728 (Sr), À0.505 (N1), À0.509
(N3), À0.637 (C51).
136.1, 137.3, 139.3, 146.2, 147.5, 149.3 ppm (aromatic C). elemental
analysis calcd (%) for C45H53N3: C 84.99, H 8.40, N 6.61; found: C
84.88, H 8.41, N 6.64.
[Ba(C6F5)(N3ArAr’)]
(5):
Bis(pentafluorophenyl)mercury
(1.07 g, 2.00 mmol) was added at ambient temperature to a stirred
mixture of barium ingots (2.5 g, 18.2 mmol) and 2a (1.27 g,
2.00 mmol) in THF (60 mL). Stirring was continued for 14 h, where-
upon the solvent was removed under reduced pressure. The green
residue was treated with n-heptane, and solid materials were
separated by centrifugation. The volume of the resulting deep
yellow solution was reduced to incipient crystallization under reduced
pressure. Storage in a freezer at À208C for several days afforded 5 as
a bright yellow, crystalline material. Yield: 1.48 g (1.58 mmol, 79%);
[7] G. B. Deacon, C. M. Forsyth, S. Nickel, J. Organomet. Chem.
2002, 647, 50.
[8] Solvated bis- and tris(triazenide) complexes with much less
bulky ligands are known for Mg and Ca: S. Westhusin, P.
Gantzel, P. J. Walsh, Inorg. Chem. 1998, 37, 5956.
[9] a) G. B. Deacon, C. M. Forsyth, Organometallics 2003, 22, 1349;
b) L. Maron, E. L. Werkema, L. Perrin, O. Eisenstein, R. A.
Andersen, J. Am. Chem. Soc. 2005, 127, 279; c) M. L. Cole, G. B.
Deacon, P. C. Junk, K. Konstas, Chem. Commun. 2005, 1581.
[10] Shock-frozen crystals in Paratone N, programs SHELXTL 5.03
and SHELXL-97, refinement with all data on F2, non-hydrogen
atoms anisotropic, hydrogen atoms at calculated positions.
Crystal data for 3: pale yellow prism (0.20 0.20 0.10 mm3)
from n-heptane at 208C, C55H60CaF5N3O, Mr = 953.92, mono-
clinic, space group P21/n, a = 9.380(3), b = 23.159(5), c =
1
m.p. 144–1708C (decomp); H NMR (250.1 MHz, [D6]benzene): d =
0.63, 0.78, 1.18 (3 d, 3JH,H = 6.8 Hz, 3 6H; o + p-CH(CH3)2), 2.04 (s,
3
12H; o-CH3), 2.19 (s, 6H; p-CH3), 2.57 (sept, JH,H = 6.8 Hz, 2H; o-
CH(CH3)2), 2.90 (sept, 3JH,H = 6.8 Hz, 1H; p-CH(CH3)2), 6.46–7.27
(m, 7H; various aryl-H), 6.78 (s, 4H; m-Mes), 7.04 ppm (s, 2H; m-
Trip); 13C NMR (62.9 MHz, [D6]benzene): d = 20.8 (o-CH3), 21.0 0(p-
CH3), 23.1, 24.2, 24.2 (o + p-CH(CH3)2), 30.5 (o-CH(CH3)2), 33.8 (p-
CH(CH3)2), 116.9, 122.0, 122.0, 123.1, 128.6, 129.0, 129.1, 129.4
(aromatic CH), 128.8, 131.5, 136.6, 137.4, 142.0, 142.4, 148.0, 150.3,
150.6, 152.1 ppm (aromatic C); signals for the C6F5 group could not be
detected or assigned completely due to signal overlap and their weak
appearance; 19F NMR (235.4 MHz, [D6]benzene): d = À159.0 (m, 2F;
m-C6F5), À154.2 (tt, 3JF,F = 20.3, 4JF,F = 3.3 Hz, 1F; p-C6F5),
À113.2 ppm (m, 2F; o-C6F5); 15N NMR (40.6 MHz, [D6]benzene):
d = 109.5 (s; -NNN-), À69.3, À70.4 ppm (s; -NNN-); elemental
analysis calcd (%) for C51H52BaF5N3: C 65.21, H 5.58, N 4.47;
found: C 64.76, H 5.76, N 4.52.
23.142(6) , b = 93.93(3)8, V= 5015(3) 3, Z = 4, 1calcd
=
1.211 gcmÀ1, m(MoKa) = 0.184 mmÀ1, Siemens P3 diffractometer,
T= 173 K, 2Vmax = 488, 8420 (Rint = 0.106) collected and 7881
unique reflections, 612 parameters, 7 restraints, absorption
correction by Y-scans, R1 = 0.117 for 2929 reflections with I >
2s(I), wR2 = 0.163 (all data), GOF = 1.071. Crystal data for 4:
yellow block (0.15 0.08 0.06 mm3) from n-heptane at À158C,
C51H52F5N3Sr, Mr = 889.58, monoclinic, space group P21/n, a =
16.051(3), b = 14.970(3), c = 19.128(4) , b = 106.79(3)8, V=
4399.9(15) 3,
Z = 4,
1calcd = 1.343 gcmÀ1
,
m(MoKa) =
1.285 mmÀ1, Nonius Kappa CCD diffractometer, T= 100 K,
2Vmax = 56.68, 50525 (Rint = 0.149) collected and 10346 unique
reflections, 571 parameters, 0 restraints, absorption correction
from symmetry-related measurements, R1 = 0.124 for 8127
reflections with I > 2s(I), wR2 = 0.298 (all data), GOF = 2.33.
Crystal data for 5: yellow block (0.15 0.06 0.04 mm3) from n-
heptane at À208C, C51H52BaF5N3, Mr = 939.30, monoclinic,
space group P21/n, a = 16.4690(4), b = 15.5775(3), c =
18.3051(3) , b = 108.2063(11)8, V= 4461.00(16) 3, Z = 4,
Details of the preparation and characterization of compounds 2b,
3, and 4, and additional spectroscopic data for 2a and 5 are given in
the Supporting Information.
Received: April 30, 2005
Keywords: barium · calcium · fluorinated ligands · N ligands ·
.
strontium
1calcd = 1.399 gcmÀ1
,
m(MoKa) = 0.946 mmÀ1
,
Nonius Kappa
CCD diffractometer, T= 100 K, 2Vmax = 56.68, 74322 (Rint
=
[1] J. Barker, M. Kilner, Coord. Chem. Rev. 1994, 133, 219.
[2] L. Bourget-Merle, M. F. Lappert, J. R. Severn, Chem. Rev. 2002,
102, 3031.
0.175) collected and 10877 unique reflections, 599 parameter, 1
restraint, absorption correction from symmetry-related mea-
surements, R1 = 0.060 for 7895 reflections with I > 2s(I), wR2 =
0.114 (all data), GOF = 1.536. CCDC-268134 (3),CCDC-268135
(4), and CCDC-268136 (5) contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from the Cambridge Crystallographic Data Centre via
[3] D. S. Moore, S. D. Robinson, Adv. Inorg. Chem. Radiochem.
1986, 30, 1.
[4] K. Vrieze, G. van Koten, in Comprehensive Coordination
Chemistry, Vol. 2 (Ed.: G. Wilkinson), Pergamon, Oxford,
1987, pp. 189 – 244.
[5] P. Gantzel, P. J. Walsh, Inorg. Chem. 1998, 37, 3450.
[6] The Gaussian 03 package (Revision B.01, Gaussian Inc.,
Pittsburgh PA, 2003) was used for all energy and frequency
calculations. The geometries of the molecules were optimized
using either density functional theory (DFT) with the functional
B3LYP for the model ligands IM–IIIM (all with implied C2
symmetry) and the model complex 4M or second-order Møller–
Plesset perturbation theory (MP2) for two conformers of the
model compound [H2N3SrC6F5] (Cs symmetry). In each case the
GDIISalgorithm with the TIGHT convergence criterion was
used. A quasi-relativistic 10-valence-electron pseudopotential
was employed for the heavy atom Sr (M. Kaupp, P. von R.
Schleyer, H. Stoll, H. Preuss, J. Chem. Phys. 1991, 94, 1360). The
corresponding 6s6p5d valence basis was augmented by one set
of f-functions. The basis sets for C, H, N, and F were either 6-
311 + G** (IM–IIIM) or 6-31G* (4M, [H2N3SrC6F5]). All sta-
tionary points were characterized by analytical or numerical
frequency analyses. The natural bond orbital analysis employed
[11] R. D. Shannon, Acta Crystallogr. Sect. A 1976, 32, 751.
[12] a) M. Westerhausen, W. Schwarz, Z. Naturforsch. B 1992, 47,
453; b) M. Westerhausen, H. D. Hausen, W. Schwarz, Z. Anorg.
Allg. Chem. 1992, 618, 121; c) M. Westerhausen, W. Schwarz, Z.
Anorg. Allg. Chem. 1993, 619, 1455; d) M. L. Cole, P. C. Junk,
New J. Chem. 2005, 29, 135.
[13] S. Harder, Organometallics 2002, 21, 3782.
[14] a) T. P. Hanusa, Coord. Chem. Rev. 2000, 210, 329; b) M.
Westerhausen, Angew. Chem. 2001, 113, 3063; Angew. Chem.
Int. Ed. 2001, 40, 2975; c) J. S. Alexander, K. Ruhlandt-Senge,
Eur. J. Inorg. Chem. 2002, 2761.
[15] F. G. N. Cloke, P. B. Hitchcock, M. F. Lappert, G. A. Lawless, B.
Royo, J. Chem. Soc. Chem. Commun. 1991, 724.
[16] C. Eaborn, S. A. Hawkes, P. B. Hitchcock, J. D. Smith, Chem.
Commun. 1997, 1961.
[17] a) G. Heckmann, M. Niemeyer, J. Am. Chem. Soc. 2000, 122,
4227; b) M. Niemeyer, Acta Crystallogr. Sect. E 2001, 57, m578.
5874
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 5871 –5875