A R T I C L E S
Dube et al.
devices. The tip of either a conducting atomic force microscope
(c-AFM) or a scanning tunneling microscope (STM) has been
used to make this contact.13-15 This approach can work well
for fundamental studies of single to several hundred molecules,
but it obviously does not make a permanent contact and is, in
general, unsuitable for fabricating arrays of devices. Formation
of inorganic or metal thin films on SAMs, whether explicitly
for top contacts or not, has mostly involved evaporative
deposition in a vacuum or liquid-phase deposition. Vapor
deposition of elemental metals (e.g., Ag, Cu, Ti, Al, Fe, Cr,
and Au) on SAMs possessing different terminal organic
functional groups (OFGs) such as -CH3, -OH, -COOH,
-COOCH3, -CN, and -SH has been studied extensively.16-24
In many cases, due to the rather unspecific reactions of many
of these elemental metals, mixed adlayers were formed because
reactions occurred not only with the OFG tail groups but also
apparently with the SAM backbone and headgroups. Such
penetration of the organic monolayer by the metal species, the
extent of which depended on the terminal OFG, as well as the
metal studied, is unacceptable concerning most devices envis-
aged for molecular electronics. Formation of inorganic-on-
organic interfaces via liquid-phase thin-film deposition has also
been problematic. TiO2 thin films have been deposited on
alkyltrichlorosilane SAMs possessing different terminal
OFGs.25-28 The films, in most instances, were rough and
exhibited poor adhesion, while molecular-level details concern-
ing the interfaces were absent from these studies. Finally, X-ray
photoelectron spectroscopy (XPS) revealed that the films
suffered from carbon and chlorine contamination.28
of metal thin films on SAMs (thiols), including Au growth via
[(CH3)3P]AuCH3,29 Pd growth via Cp(allyl)Pd,29c,30 and Al
growth via [(CH3)3N]AlH3.31,32 In the case of Au and Pd
deposition, the selectivity of growth and film morphology were
examined. In the case of Al deposition,31 interfacial chemistry
was examined using XPS, but an explicit examination of the
kinetics of adsorption was not attempted. Recently, we have
completed what is perhaps the most rigorous study of the
reaction of a transition metal coordination complex with
SAMs,33 in this case, the reaction of tetrakis(dimethylamido)-
titanium, Ti[N(CH3)2]4, a TiN precursor,34-41 with alkyltrichlo-
rosilane SAMs possessing -OH, -NH2, and -CH3 terminal
OFGs. We found by XPS that the reaction was self-limiting in
all these cases. Using angle-resolved XPS (ARXPS) to probe
the spatial extent of the reaction, we found that penetration of
the SAM followed by reaction at the SAM/substrate occurred
in the case of the -CH3 SAM. In the case of the -NH2 SAM,
however, no evidence of penetration was found, and reaction
was confined to the terminal -NH2 group.
In this work, we consider the reaction of Ti[N(CH3)2]4 with
adsorbed molecules that possess specially chosen head and tail
groups and backbone. In particular, a thiophene headgroup has
been chosen for its affinity for Au surfaces, an isopropylamine
terminal OFG to react with Ti[N(CH3)2]4, and a phenylene-
ethynylene backbone for electrical conduction. Although a
specific device function is not assumed here, this scheme leads
to the aforementioned electrode/molecule/electrode structural
motif used in molecular switches5,12 and rectifiers.11 Thiophenes
offer potential advantages over the related thiols. For example,
thiols may be reduced to thiolates42 or oxidized to disulfides,43
whereas the likelihood of a thiophene group participating in
reactions other than simple molecular adsorption, under our
reaction conditions, is quite small due to its stable ring structure.
Comparative studies of thiophene SAMs and thiol SAMs on
Au are relatively scarce. STM has been used to demonstrate
that thiophene can form well-ordered monolayers on Au(111).44
In another study, the structural evolution of a thiophene SAM
Formation of inorganic-organic interfaces via the use of
transition metal coordination complexes holds tremendous
promise. A key is to tailor both the terminal OFG and the
transition metal complex such that they react with each other
in a specific fashion. Growth that is self-limiting may also be
desirable and feasible with this approach, as uncontrolled
continuous deposition might lead to degradation of the interface.
There are a handful of studies that have examined the deposition
(29) (a) Wohlfart, P.; Weiss, J.; Kashammer, J.; Winter, C.; Scheumann, V.;
Fischer, R. A.; Mittler-Nehera, S. Thin Solid Films 1999, 340, 274-279.
(b) Winter, C.; Weckenmann, U.; Fischer, R. A.; Kashammer, J.; Scheu-
mann, V.; Mittler, S. Chem. Vap. Depn. 2000, 6, 199-205. (c) Fischer, R.
A.; Weckenmann, U.; Winter, C.; Ka¨shammer, J.; Scheumann, V.; Mittler,
S. J. Phys. IV: Proc. 2001, 11, Pr3/1183-Pr3/1190.
(30) Weckenmann, U.; Mittler, S.; Kra¨mer, S.; Aliganga, A. K. A.; Fischer, R.
A. Chem Mater. 2004, 16, 621-628.
(13) Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A.
L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Science 2001, 294,
571-574.
(14) Ng, M. K.; Lee, D. C.; Yu, L. J. Am. Chem. Soc. 2002, 124, 11862-
11863.
(15) Bumm, L. A.; Arnold, J. J.; Cygan, M. T.; Dunbar, T. D.; Burgin, T. P.;
Jones, L., II; Allara, D. L.; Tour, J. M.; Weiss, P. S. Science 1996, 271,
1705-1707.
(31) Weiss, J.; Himmel, H. J.; Fischer, R. A.; Woell, C. Chem. Vap. Deposition
1998, 4, 17-21.
(16) Jung, D. R.; Czanderna, A. W. Crit. ReV. Solid State Mater. Sci. 1994, 19,
1-54.
(32) Wohlfart, P.; Weiss, J.; Ka¨shmmer, J.; Kreiter, M.; Winter, C.; Fischer,
R.; Mittler-Neher, S. Chem. Vap. Deposition 1999, 5, 165-170.
(33) Killampalli, A. S.; Ma, P. F.; Engstrom, J. R. J. Am. Chem. Soc. 2005,
127, 6300-6310.
(17) Herdt, G. C.; Jung, D. R.; Czanderna, A. W. Prog. Surf. Sci. 1995, 50,
103-129.
(18) Tarlov, M. J. Langmuir 1992, 8, 80-89.
(19) Ohgi, T.; Sheng, H.-Y.; Dong, Z.-C.; Nejoh, H. Surf. Sci. 1999,442, 277-
(34) Fix, R.; Gordon, R. G.; Hoffman, D. M. Chem. Mater. 1991, 3, 1138-
282.
1148.
(20) Fisher, G. L.; Hooper, A. E.; Opila, R. L.; Allara, D. L.; Winograd, N. J.
Phys. Chem. B 2000, 104, 3267-3273.
(35) Musher, J. N.; Gordon, R. G. J. Mater. Res. 1996, 11, 989-1001.
(36) Ritala, M.; Asikainen, T.; Leskela¨, M.; Jokinen, J.; Lappalainen, R.;
Utriainen, M.; Niinisto¨, L.; Ristolainen, E. Appl. Surf. Sci. 1997, 120, 199-
212.
(21) Konstadinidis, K.; Zhang, P.; Opila, R. L.; Allara, D. L. Surf. Sci. 1995,
338, 300-312.
(22) Hooper, A. E.; Fisher, G. L.; Konstadinidis, K.; Jung, D.; Nguyen, H.;
Opila, R. L.; Collins, R. W.; Winograd. N.; Allara, D. L. J. Am. Chem.
Soc. 1999, 121, 8052-8064.
(37) Berry, A.; Mowery, R.; Turner, N. H.; Seitzman, L.; Dunn, D.; Ladouceur,
H. Thin Solid Films 1998, 323, 10-17.
(38) Min, J.-S.; Park, J.-S.; Park, H.-S.; Kang, S.-W. J. Electrochem. Soc. 2000,
147, 3868-3872.
(23) Fisher, G. L.; Walker, A. V.; Hooper, A. E.; Tighe, T. B.; Bahnck, K. B.;
Skriba, H. T.; Reinard, M. D.; Haynie, B. C.; Opila, R. L.; Winograd, N.;
Allara, D. L. J. Am. Chem. Soc. 2002, 124, 5528-5541.
(24) Carlo, S. R.; Wagner, A. J.; Fairbrother, D. H. J. Phys. Chem. B 2000,
104, 6633-6641.
(39) Ritala, M.; Asikainen, T.; Leskela¨, M.; Dekker, J.-P.; Mutsaers, C.; Soininen,
P. J.; Skarp, J. Chem. Vap. Deposition 1999, 5, 7-9.
(40) Elam, J. W.; Wilson, C. A.; Schuisky, M.; Sechrist, Z. A.; George, S. M.
J. Vac. Sci. Technol. B 2003, 21, 1099-1107.
(25) Shin, H.; Collins, R. J.; De Guire, M. R.; Heuer, A. H.; Sukenik, C. N. J.
Mater. Res. 1995, 10, 692-698.
(41) Elam, J. W.; Schuisky, M.; Ferguson, J. D.; George, S. M. Thin Solid Films
2003, 436, 145-156.
(26) Shin, H.; Collins, R. J.; De Guire, M. R.; Heuer, A. H.; Sukenik, C. N. J.
Mater. Res. 1995, 10, 699-703.
(42) Biebuyck, H. A.; Bain, C. D.; Whitesides, G. M. Langmuir 1994, 10, 1825-
1831.
(27) Niesen, T. P.; Bill, J.; Aldinger, F. Chem. Mater. 2001, 13, 1552-1559.
(28) Masuda, Y.; Jinbo, Y.; Yonezawa, T.; Koumoto, K. Chem. Mater. 2002,
14, 1236-1241.
(43) Fenter, P.; Eberhardt, A.; Eisenberger, P. Science 1994, 266, 1216-1218.
(44) Dishner, M. H.; Hemminger, J. C.; Feher, F. J. Langmuir 1996, 12, 6176-
6178.
9
14300 J. AM. CHEM. SOC. VOL. 127, NO. 41, 2005