A R T I C L E S
Hu et al.
were found to be extremely effective improvements for the
catalytic KR of various secondary alcohols, with selectivity
factors up to 117 and 355 respectively. Since cation-π
interactions have been invoked to explain the selectivity of
nucleophilic catalysis5b,d,10 and demonstrated to exert intramo-
lecular control in flexible-sensor systems,11,12 it is reasonable
to expect that such phenomena may be operating here, although
Houk and co-workers13 elucidated a subtle interplay between
steric and electronic effects that revealed CH-π interactions
to play an important role in some catalytic systems as well.
While there have been reports dedicated to uncovering the
origins of enantioselectivity in catalytic KR, the goal of unam-
biguous elucidation of the origin of enantioselectivity still
remains.14
Herein, we describe these new nonenzymatic nucleophilic
catalysts 1 and their application to catalytic KR of arylalkyl
carbinols with selectivity factors up to an impressive value of
1892, which is comparable to that achievable with enzymes.
This new catalyst construct also serves as a good model for the
elucidation of the experimental rationale of the importance of
the π-π and cation-π interactions in delineating the control
of stereoselection. Unlike enzymes, the general class of synthetic
catalyst defined here can operate over a wide temperature range,
is tolerant of a variety of solvent conditions, and offers wider
substrate scope. The catalyst system described herein offers
hitherto unachievable enzyme-like selectivity factors from a
synthetic catalyst, and in view of the advantages of synthetic
catalysts, this system can truly supplant enzyme-mediated re-
actions.
Encouraged by the success of the combination of planar
chirality and central chirality in asymmetric catalysis,15 we set
out to develop the new class of planar chiral ferrocene
nucleophilic catalysts 1, which combine aspects from planar
chiral DMAP and chiral imidazole catalysts (Figure 1).
Birman14,16 has discussed how the phenyl group on the
stereogenic center of their imidazole rings exerts its stereo-
chemical influence primarily through discriminating between
the two faces of the carbonyl group of the in situ-generated
amide in its transition state of acyl transfer. Although good
empirical evidence was offered, it is generally difficult to ascribe
the level of stereoselection to any one factor, since it is
inherently difficult to corroborate computational and experi-
mental observations.14a As with existing rationales for stereo-
selection in planar chiral nucleophilic catalysis,4a it is apparent
that our system also benefits from the steric influence of the
pentaphenyl floor, i.e., the “bottom” face is completely blocked
by the η5-C5Ph5 moiety.
The synthesis of desired planar chiral PIP 1 was accomplished
as shown in Figure 2. In the case of 1a as an example, the
catalyst synthesis was conducted as follows: The preparation
of racemic 3 according to Fu’s protocol4a followed by the Pd-
catalyzed C-N coupling of (S)-4-phenyloxazolidin-2-one to 3
gave two chromatographically separable diastereoisomers, (S,Sp)-
and (S,Rp)-4a in 45 and 47% yield, respectively (92% overall
yield). Hydrolysis of the resultant isomers in the presence of
methanolic sodium hydroxide afforded the corresponding al-
cohols, which were then treated with MsCl/Et3N without further
purification to furnish the two diastereoisomers (S,Sp)- and
(S,Rp)-1a in 83 and 85% yield, respectively. The relative
configurations of two isomers were assigned on the basis of
the X-ray diffraction analysis of the isomer (S,Sp)-1a (Figure 2
inset).
(4) (a) Ruble, J. C.; Latham, H. A.; Fu, G. C. J. Am. Chem. Soc. 1997,
119, 1492–1493. (b) Ruble, J. C.; Tweddell, J.; Fu, G. C. J. Org. Chem.
1998, 63, 2794–2795. (c) Fu, G. C. Acc. Chem. Res. 2000, 33, 412–
420. (d) Kawabata, T.; Nagato, M.; Takasu, K.; Fuji, K. J. Am. Chem.
Soc. 1997, 119, 3169–3170. (e) Miller, S. J.; Copeland, G. T.;
Papaioannou, N.; Horstmann, T. E.; Ruel, E. M. J. Am. Chem. Soc.
1998, 120, 1629–1630. (f) Copeland, G. T.; Miller, S. J. J. Am. Chem.
Soc. 2001, 123, 6496–6502. (g) Miller, S. J. Acc. Chem. Res. 2004,
37, 601–610. (h) Vedejs, E.; Daugulis, O. J. Am. Chem. Soc. 1999,
121, 5813–5814. (i) Vedejs, E.; Daugulis, O. J. Am. Chem. Soc. 2003,
125, 4166–4173. (j) Spivey, A. C.; Fekner, T.; Spey, S. E. J. Org.
Chem. 2000, 65, 3154–3159. (k) Priem, G.; Pelotier, B.; Macdonald,
S. J. F.; Anson, M. S.; Campbell, I. B. J. Org. Chem. 2003, 68, 3844–
3848. (l) Kano, T.; Sasaki, K.; Maruoka, K. Org. Lett. 2005, 7, 1347–
1349. (m) Terakado, D.; Koutaka, H.; Oriyama, T. Tetrahedron:
Asymmetry 2005, 16, 1157–1165. (n) Kosugi, Y.; Akakura, M.;
Ishihara, K. Tetrahedron 2007, 63, 6191–6203.
(5) (a) Kawabata, T.; Stragies, R.; Fukaya, T.; Nagaoka, Y.; Schedel, H.;
Fuji, K. Tetrahedron Lett. 2003, 44, 1545–1548. (b) Kawabata, T.;
Stragies, R.; Fukaya, T.; Fuji, K. Chirality 2003, 15, 71–76. (c)
Kawabata, T.; Yamamoto, K.; Momose, Y.; Yoshida, H.; Nagaoka,
Y.; Fuji, K. Chem. Commun. 2001, 2700–2701. (d) Yamada, S.;
Misono, T.; Iwai, Y. Tetrahedron Lett. 2005, 46, 2239–2242.
(6) (a) Spivey, A. C.; Arseniyadis, S.; Fekner, T.; Maddaford, A.; Leese,
D. P. Tetrahedron 2006, 62, 295–301. (b) Spivey, A. C.; Leese, D. P.;
Zhu, F. J.; Davey, S. G.; Jarvest, R. L. Tetrahedron 2004, 60, 4513–
4525. (c) Spivey, A. C.; Maddaford, A.; Leese, D. P.; Redgrave, A. J.
J. Chem. Soc., Perkin Trans. 1 2001, 1785–1794. (d) Spivey, A. C.;
Zhu, F. J.; Mitchell, M. B.; Davey, S. G.; Jarvest, R. L. J. Org. Chem.
2003, 68, 7379–7385.
(7) (a) Nguyen, H. V.; Butler, D. C. D.; Richards, C. J. Org. Lett. 2006,
8, 769–772. (b) Nguyen, H. V.; Motevalli, M.; Richards, C. J. Synlett
2007, 725–728. (c) Nguyen, H. V.; Yeamine, M. R.; Amin, J.;
Motevalli, M.; Richards, C. J. J. Organomet. Chem. 2008, 693, 3668–
3676.
With the eight planar chiral PIP derivatives Sp-1a-d and Rp-
1a-d in hand, we proceeded to investigate their catalytic
behavior in the catalytic KR of (()-1-phenylpropanol under
Birman’s optimal resolution conditions at 0 °C;8a the results
are summarized in Table 1. Surprisingly, only one compound,
namely, Rp-1a (S ) 27), gave catalytic results with S values
comparable to those of the systems of Birman and Fu. In
contrast, Sp-1a was completely catalytically inactive for acyl
transfer even after a prolonged reaction time. These findings
clearly indicated that the phenyl group attached to the stereo-
genic center of Sp-1a is bulky enough to shield the entire top
face from effective acyl transfer.
(8) (a) Birman, V. B.; Uffman, E. W.; Hui, J.; Li, X. M.; Kilbane, C. J.
J. Am. Chem. Soc. 2004, 126, 12226–12227. (b) Birman, V. B.; Jiang,
H. Org. Lett. 2005, 7, 3445–3447. (c) Birman, V. B.; Li, X. M. Org.
Lett. 2006, 8, 1351–1354.
(9) Yamada, S. Org. Biomol. Chem. 2007, 5, 2903–2912.
(10) Yamada, S.; Yamashita, K. Tetrahedron Lett. 2008, 49, 32–35.
(11) (a) Richter, I.; Minari, J.; Axe, P.; Lowe, J. P.; James, T. D.; Sakurai,
K.; Bull, S. D.; Fossey, J. S. Chem. Commun. 2008, 1082–1084. (b)
Richter, I.; Warren, M. R.; Minari, J.; Elfeky, S. A.; Chen, W. B.;
Mahon, M. E.; Raithby, P. R.; James, T. D.; Sakurai, K.; Teat, S. J.;
Bull, S. D.; Fossey, J. S. Chem.sAsian J. 2009, 4, 194–198.
(12) (a) Chen, W.; Elfeky, S. A.; Nonne, Y.; Male, L.; Ahmed, K.; Amiable,
C.; Axe, P.; Yamada, S.; James, T. D.; Bull, S. D.; Fossey, J. S. Chem.
Commun. [Online early access]. DOI: 10.1039/c0cc01420f. Published
Online: July 5, 2010. (b) Huang, Y. J.; Jiang, Y. B.; Bull, S. D.; Fossey,
J. S.; James, T. D. Chem. Commun. 2010, 46, 8180–8182.
(13) Krenske, E. H.; Houk, K. N.; Lohse, A. G.; Antoline, J. E.; Hsung,
R. P. Chem. Sci. 2010, 1, 387–392.
(15) (a) Deng, W. P.; Hou, X. L.; Dai, L. X.; Yu, Y. H.; Xia, W. Chem.
Commun. 2000, 285–286. (b) Deng, W. P.; Hou, X. L.; Dai, L. X.;
Dong, X. W. Chem. Commun. 2000, 1483–1484. (c) Deng, W. P.;
You, S. L.; Hou, X. L.; Dai, L. X.; Yu, Y. H.; Xia, W.; Sun, J. J. Am.
Chem. Soc. 2001, 123, 6508–6519. (d) Dai, L. X.; Tu, T.; You, S. L.;
Deng, W. P.; Hou, X. L. Acc. Chem. Res. 2003, 36, 659–667.
(16) Birman, V. B.; Li, X. M.; Jiang, H.; Uffman, E. W. Tetrahedron 2006,
62, 285–294.
(14) (a) Li, X. M.; Liu, P.; Houk, K. N.; Birman, V. B. J. Am. Chem. Soc.
2008, 130, 13836–13837. (b) Zhang, Y. H.; Birman, V. B. AdV. Synth.
Catal. 2009, 351, 2525–2529.
9
17042 J. AM. CHEM. SOC. VOL. 132, NO. 47, 2010