Communication
ChemComm
Table 2 Cross-coupling reactions of various PhX and PhB(OH)2 mole-
cules catalyzed by Pd-OMFa
In summary, we prepared a Pd–C bond-connected OMF and,
furthermore, introduced the Pd–isocyanide species into an
OMF network. The obtained Pd-OMF exhibited high catalytic
activity to promote the Suzuki–Miyaura cross-coupling reaction
in a heterogeneous way. We have expanded the research field of
polymeric porous materials driven by metal–carbon bonding
interactions.
We are grateful for financial support from NSFC (21971153,
21671122, 21802091), Taishan Scholar’s Construction Project,
and Changjiang Scholar Project at SDNU.
Entry
R1
X
R2
t (h)
Yieldb (%)
1
H
Br
Br
Br
Br
Br
Br
Br
Br
Br
I
I
I
I
I
I
I
I
I
I
I
I
H
H
H
H
H
H
H
H
8
8
8
8
8
8
8
8
8
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
99
99
99
99
99
97
99
99
99
99
99
99
99
99
99
99
99
99
499
499
96
6
2
4-NO2
4-COCH3
4-OCH3
3-OH
2-CN
2-CH3
3-NO2
H
3c
4
5
6
7
8
Conflicts of interest
9
4-OCH3
H
H
H
H
H
H
H
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
H
There are no conflicts of interest to declare.
2-OCH3
2-CF3
3-CH3
3-NO2
4-OCH3
4-CN
4-CO2CH3
H
Notes and references
1 H.-C. Zhou, J. R. Long and O. M. Yaghi, Chem. Rev., 2012, 112,
673–674.
2 (a) P. J. Waller, F. Gandara and O. M. Yaghi, Acc. Chem. Res., 2015,
48, 3053–3063; (b) X. Feng, X. Ding and D. Jiang, Chem. Soc. Rev.,
2012, 41, 6010–6022.
3 (a) J.-R. Li, J. Sculley and H.-C. Zhou, Chem. Rev., 2012, 112, 869–932;
(b) S. Yuan, X. Li, J. Zhu, G. Zhang, P. V. Puyvelde and B. V. der
Bruggen, Chem. Soc. Rev., 2019, 48, 2665–2681.
H
2-OCH3
4-F
3-OCH3
4-CN
H
H
H
3-NO2
4-CN
H
H
Cl
Cl
Cl
Cl
4 (a) M. Yoon, R. Srirambalaji and K. Kim, Chem. Rev., 2012, 112,
1196–1231; (b) S.-Y. Ding and W. Wang, Chem. Soc. Rev., 2013, 42,
548–568.
4-CF3
4-NO2
2-CN
9
55
45
H
5 (a) P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin,
a
´
P. Couvreur, G. Ferey, R. E. Morris and C. Serre, Chem. Rev., 2012,
Reaction conditions: PhX (1.0 mmol), PhB(OH)2 (1.1 mmol), K2CO3
112, 1232–1268; (b) Q. Guan, Y.-A. Li, W.-Y. Li and Y.-B. Dong,
Chem. – Asian J., 2018, 13, 3122–3149; (c) Q. Guan, D.-D. Fu, Y.-A. Li,
X.-M. Kong, Z.-Y. Wei, W.-Y. Li, S.-J. Zhang and Y.-B. Dong, iScience,
2019, 14, 180–198.
6 (a) L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne
and J. T. Hupp, Chem. Rev., 2012, 112, 1105–1125; (b) X. Liu,
D. Huang, C. Lai, G. Zeng, L. Qin, H. Wang, H. Yi, B. Li, S. Liu,
M. Zhang, R. Deng, Y. Fu, L. Li, W. Xue and S. Chen, Chem. Soc. Rev.,
2019, 48, 5266–5302.
(2 mmol, 0.276 g), Pd-OMF (0.7 mol% Pd equiv.), methanol (2 mL), 70 1C,
c
in N2. b Yields were determined by GC (ESI). 40-Bromoacetophenone and
phenylboric acid coupling gave 76% yield in the presence of molecular
(AdNC)2PdCl2 catalyst (PhX, 1 mmol; PhB(OH)2, 1.2 mmol; Cs2CO3,
2.2 mmol; (AdNC)2PdCl2, 0.05 mmol; refluxed in dioxane for 18 h).14
based on iodobenzene and 2-, 4- or 3-substituted phenyl iodides
was 99% even at 7 h (Table 2, entries 10–17). For coupling with
substituted phenylboronic acids, phenyl iodides also afforded
excellent yields of 96% to 499% but in 8 h (Table 2, entries 18–21).
In contrast, Pd-OMF could not effectively activate ArCl-based
Suzuki–Miyaura reactions. For example, the coupling of phenyl-
boronic acid with chlorobenzene or trifluoromethylchloroben-
zene only gave 6% or 9% yield under given conditions (Table 2,
entries 22 and 23). The coupling of nitro- or cyano-substituted
phenyl chlorine with phenylboronic acid, however, provided
moderate (55% or 45%) yields (Table 2, entries 24 and 25).
The possible mechanism of the Pd-OMF-catalysed Suzuki–
Miyaura coupling reaction was believed to be the same as that of
molecular isocyanide–Pd-promoted coupling reactions in solution
7 J. D. Dunitz and L. E. Orgen, Nature, 1953, 171, 121–122.
8 Although metal–carbon bond can be used to connect extended
organometallic structures in principle, only few such examples have
been reported thus far: (a) D. W. Agnew, I. M. DiMucci, A. Arroyave,
M. Gembicky, C. E. Moore, S. N. MacMillan, A. L. Rheingold,
K. M. Lancaster and J. S. Figueroa, J. Am. Chem. Soc., 2017, 139,
17257–17260; (b) D. W. Agnew, M. Gembicky, C. E. Moore, A. L.
Rheingold and J. S. Figueroa, J. Am. Chem. Soc., 2016, 138,
15138–15141.
9 (a) E. Hahn, Angew. Chem., Int. Ed., Engl., 1993, 32, 650–665;
´
(b) R. A. Michelin, A. J. L. Pombeiro, M. Fatima and C. G. da Silva,
Coord. Chem. Rev., 2001, 218, 43–74; (c) B. R. Barnett and J. S.
Figueroa, Chem. Commun., 2016, 52, 13829–13839.
10 (a) A. Mayr and J. Guo, Inorg. Chem., 1999, 38, 921–928; (b) A. Mayr
and L. F. Mao, Inorg. Chem., 1998, 37, 5776–5780.
11 A. C. Thomas, Photoelectron and Auger Spectroscopy, Plenum, New
York, 1975.
12 Materials Studio Release Notes ver. 2018, Accelrys Software.
(ESI†).13 In comparison with molecular isocyanide–Pd catalysts, 13 K. T. Mahmudov, V. Y. Kukushkin, A. V. Gurbanov, M. A. Kinzhalov,
V. P. Boyarskiy, M. F. C. G. da Silva and A. J. L. Pombeiro, Coord.
Chem. Rev., 2019, 384, 65–89.
14 D. Villemin, A. Jullien and N. Bar, Tetrahedron Lett., 2007, 48,
Pd-OMF required less catalyst-loading, a lower reaction tempera-
ture, and shorter reaction time, but elicited a much higher reaction
yield (Table 2, footnote for entry 3).
4191–4193.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 14414--14417 | 14417