P. Zhao et al.: Detection of Neutral Fragments from Ion Dissociation
H) ions in the gas phase and the generation of their neutral counterparts by
neutralization-reionization mass spectrometry. J. Am. Soc. Mass
Spectrom. 6, 1143–1153 (1995)
Conclusions
This study demonstrates a new application of APTD in inves-
tigating the amino acid and peptide ion dissociation mecha-
nisms, specifically identification of the neutral loss species CO
involved in dissociation of protonated amino acid into iminium
ion and peptide ion b ➔a conversion. Due to the fact that ion
dissociation in APTD occurs at atmospheric pressure, charac-
terization of neutral species becomes possible, as demonstrated
using either online CO sensor or offline spectroscopic/mass
spectrometric tools. Our results demonstrate that the fragmen-
tation of protonated amino acids into iminium ions involves
losses of CO and H2O rather than loss of HCOOH or C(OH)2.
Detection of CO from the tested peptide ions demonstrates that
a ion is most likely to come from b ion dissociation by loss of
CO. Our study once again suggests that APTD has utility for
structure analysis and elucidation of ion dissociation mecha-
nism. Due to the neutral fragment characterization could pro-
vide increased structural information, this method could be
used to elucidate complicated ion dissociation mechanisms,
such as the investigation of cyclic peptide or glycan ion disso-
ciation behaviors, which could be helpful to cyclic peptide
sequencing and glycan structural analysis.
12. Polce, M.J., Nold, M.J., Wesdemiotis, C.: Characterization of neutral
fragments in tandem mass spectrometry: a unique route to mechanistic
and structural information. J. Mass Spectrom. 31, 1073–1085 (1996)
13. Chen, H., Eberlin, L.S., Nefliu, M., Augusti, R., Cooks, R.G.: Organic
reactions of ionic intermediates promoted by atmospheric-pressure ther-
mal activation. Angew. Chemie Int. Ed. 47, 3422–3425 (2008)
14. Eberlin, L.S., Xia, Y., Chen, H., Cooks, R.G.: Atmospheric pressure
thermal dissociation of phospho- and sulfopeptides. J. Am. Soc. Mass
Spectrom. 19, 1897–1905 (2008)
15. Chen, H., Eberlin, L.S., Cooks, R.G.: Neutral fragment mass spectra via
ambient thermal dissociation of peptide and protein ions. J. Am. Chem.
Soc. 129, 5880–5886 (2007)
16. Liu, P., Cooks, R.G., Chen, H.: Nuclear magnetic resonance structure
elucidation of peptide b 2 ions. Angew. Chemie Int. Ed. 54, 1547–1550
(2015)
17. Liu, P., Zhao, P., Cooks, R.G., Chen, H.: Atmospheric pressure neutral
reionization mass spectrometry for structural analysis. Chem. Sci. 8,
6499–6507 (2017)
18. Thomas, D.A., Sohn, C.H., Gao, J., Beauchamp, J.L.: Hydrogen bonding
constrains free radical reaction dynamics at serine and threonine residues
in peptides. J. Phys. Chem. A. 118, 8380–8392 (2014)
19. Sohn, C.H., Gao, J., Thomas, D.A., Kim, T.-Y., Goddard III, W.A.,
Beauchamp, J.L.: Mechanisms and energetics of free radical initiated
disulfide bond cleavage in model peptides and insulin by mass spectrom-
etry. Chem. Sci. 6, 4550–4560 (2015)
20. Tureček, F., Julian, R.R.: Peptide radicals and cation radicals in the gas
phase. Chem. Rev. 113, 6691–6733 (2013)
21. Ly, T., Julian, R.R.: Residue-specific radical-directed dissociation of
whole proteins in the gas phase. J. Am. Chem. Soc. 130, 351–358 (2007)
22. Yang, L., Mazyar, O.A., Lourderaj, U., Wang, J., Rodgers, M.T., Martí-
nez-Núñez, E., Addepalli, S.V., Hase, W.L.: Chemical dynamics simula-
tions of energy transfer in collisions of protonated peptide−ions with a
perfluorinated alkylthiol self-assembled monolayer surface. J. Phys.
Chem. C. 112, 9377–9386 (2008)
23. Benninghoven, A., Sichtermann, W.K.: Detection, identification, and
structural investigation of biologically important compounds by second-
ary ion mass spectrometry. Anal. Chem. 50, 1180–1184 (1978)
24. Milne, G.W.A., Axenrod, T., Fales, H.M.: Chemical ionization mass
spectrometry of complex molecules. IV. Amino acids. J. Am. Chem.
Soc. 92, 5170–5175 (1970)
25. Bouchonnet, S., Denhez, J.P., Hoppilliard, Y., Mauriac, C.: Is plasma desorp-
tion mass spectrometry useful for small-molecule analysis? Fragmentations of
the natural.alpha.-amino acids. Anal. Chem. 64, 743–754 (1992)
26. Leclercq, P.A., Desiderio, D.M.: Chemical ionization mass spectra of
amino acids and derivatives. Occurrence and fragmentation of ion-
molecule reaction products. Org. Mass Spectrom. 7, 515–533 (1973)
27. Tsang, C.W., Harrison, A.G.: Chemical ionization of amino acids. J. Am.
Chem. Soc. 98, 1301–1308 (1975)
Funding Information
This work was supported by the fund from the Merck Research
Laboratories New Technologies Review & Licensing Commit-
tee (NT-RLC) and also funded by NSF (CHE-1709075) and
NSF IDBR (CHE-1455554).
References
1. Beranová, S., Cai, J., Wesdemiotis, C.: Unimolecular chemistry of pro-
tonated glycine and its neutralized form in the gas phase. J. Am. Chem.
Soc. 117, 9492–9501 (1995)
2. Steen, H., Mann, M.: The abc’s (and xyz’s) of peptide sequencing. Nat.
Rev. Mol. Cell Biol. 5, 699–711 (2004)
3. Medzihradszky, K.F., Chalkley, R.J.: Lessons in de novo peptide se-
quencing by tandem mass spectrometry. Mass Spectrom. Rev. 34, 43–
63 (2015)
4. Seidler, J., Zinn, N., Boehm, M.E., Lehmann, W.D.: De novo sequencing
of peptides by MS/MS. Proteomics. 10, 634–649 (2010)
5. Marzluff, E.M., Campbell, S., Rodgers, M.T., Beauchamp, J.L.: Low-
energy dissociation pathways of small deprotonated peptides in the gas
phase. J. Am. Chem. Soc. 116, 7787–7796 (1994)
28. Ambihapathy, K., Yalcin, T., Leung, H.-W., Harrison, A.G.: Pathways to
immonium ions in the fragmentation of protonated peptides. J. Mass
Spectrom. 32, 209–215 (1997)
29. Pingitore, F., Polce, M.J., Wang, P., Wesdemiotis, C., Paizs, B.: Intramo-
lecular condensation reactions in protonated dipeptides: carbon monox-
ide, water, and ammonia losses in competition. J. Am. Soc. Mass
Spectrom. 15, 1025–1038 (2004)
6. Ly, T., Julian, R.R.: Ultraviolet photodissociation: developments towards
applications for mass-spectrometry-based proteomics. Angew. Chemie
Int. Ed. 48, 7130–7137 (2009)
7. Butcher, D.J., Asano, K.G., Goeringer, D.E., McLuckey, S.A.: Thermal
dissociation of gaseous bradykinin ions. J. Phys. Chem. A. 103, 8664–
8671 (1999)
8. Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron Capture Dis-
sociation of Multiply Charged Protein Cations. A Nonergodic Process. J
Am Chem Soc. 120, 3265–3266 (1998)
9. Wesdemiotis, C., McLafferty, F.W.: Neutralization-reionization mass
spectrometry (NRMS). Chem. Rev. 87, 485–500 (1987)
30. Reid, G.E., Simpson, R.J., O’Hair, R.A.J.: A mass spectrometric and ab
initio study of the pathways for dehydration of simple glycine and
cysteine-containing peptide [M+H]+ ions. J. Am. Soc. Mass Spectrom.
9, 945–956 (1998)
31. O’Hair, R.A.J., Broughton, P.S., Styles, M.L., Frink, B.T., Hadad, C.M.:
The fragmentation pathways of protonated glycine: a computational
study. J. Am. Soc. Mass Spectrom. 11, 687–696 (2000)
32. Kulik, W., Heerma, W.: Fast atom bombardment tandem mass spectrom-
etry for amino acid sequence determination in tripeptides. Biol. Mass
Spectrom. 18, 910–917 (1989)
33. Meot-Ner, M., Field, F.H.: Chemical ionization mass spectrometry. XX.
Energy effects and virtual ion temperature in the decomposition kinetics
of amino acids and amino acid derivatives. J. Am. Chem. Soc. 95, 7207–
7211 (1973)
10. Goldberg, N., Schwarz, H.: Neutralization-reionization mass spectrome-
try: a powerful “laboratory” to generate and probe elusive neutral mole-
cules. Acc. Chem. Res. 27, 347–352 (1994)
11. Zagorevskii, D.V., Holmes, J.L., Zverev, D.V., Orlova, T.Y., Nekrasov,
Y.S.: The structure of C5H5RFe+ (R = F, cl, Br, I, O, OH, OCH3, C6H5,
34. Zoltán Takáts, Justin M. Wiseman, Bogdan Gologan, and, Cooks, R.G.:
Electrosonic Spray ionization. A gentle technique for generating folded