Journal of the American Chemical Society
Article
2008, 130, 13222−13224. (d) Li, X.; Yuan, Y.; Kan, C.; Danishefsky, S.
J. J. Am. Chem. Soc. 2008, 130, 13225−13227. (e) Li, X.; Danishefsky,
S. J. Nat. Protoc. 2008, 3, 1666−1670. (f) Zhu, J.; Wu, X.; Danishefsky,
S. J. Tetrahedron Lett. 2009, 50, 577−579. (g) Wu, X.; Li, X.;
Danishefsky, S. J. Tetrahedron Lett. 2009, 50, 1523−1525. (h) Yuan,
Y.; Zhu, J.; Li, X.; Wu, X.; Danishefsky, S. J. Tetrahedron Lett. 2009, 50,
2329−2333. (i) Wu, X.; Yuan, Y.; Li, X.; Danishefsky, S. J. Tetrahedron
Lett. 2009, 50, 4666−4669. (j) Stockdill, J. L.; Wu, X.; Danishefsky, S.
J. Tetrahedron Lett. 2009, 50, 5152−5155. (k) Rao, Y.; Li, X.;
Danishefsky, S. J. J. Am. Chem. Soc. 2009, 131, 12924−12926. (l) Wu,
X.; Stockdill, J. L.; Wang, P.; Danishefsky, S. J. J. Am. Chem. Soc. 2010,
132, 4098−4100. (m) Wu, X.; Park, P. K.; Danishefsky, S. J. J. Am.
Chem. Soc. 2011, 133, 7700−7703.
macrocyclization was achieved with high efficiency using
isonitrile chemistry. Another important finding concerned the
final macrolactamization step. In the precyclosporine series,
which manifests a high level of preorganization, cyclization
occurs smoothly to provide the spectroscopically well-ordered
1. In the case of the D-MeVal(11) system 27 derived from epi-
26, cyclization does not seem to benefit as much from
preorganization. Depending on the conditions, this ring closure
can provide either cyclosporin H (i.e., [D-MeVal(11)]-cyclo-
sporin A) or, under epimerization-prone FCMA conditions, a
new cyclosporin, tentatively assigned as the [D-Ala(7),D-
MeVal(11)] compound. Neither cyclosporin H nor the [D-
Ala(7),D-MeVal(11)] cyclosporin exhibit well-ordered struc-
tures at room temperature by NMR criteria. It is interesting to
note that the relative configurations at the α-stereocenters
needed for rapid macrolactam formation resulting in a well-
ordered molecule may correlate well with the bioactivity of the
resultant product.
(8) We use this term as a mnemonic device to convey the idea that
none of the elements of the isonitrile appear in the product, in
distinction to the situation in type I. Of course, the isonitrile becomes
the corresponding formamide, which can, in principle, be recycled to
regenerate the isonitrile.
(9) Dreyfuss, M.; Haerri, E.; Hofmann, H.; Kobel, H.; Pache, W.;
Tscherter, H. Eur. J. Appl. Microbiol. 1976, 3, 125−133.
(10) (a) Stahelin, H. F. Experientia 1996, 52, 5−13. (b) Heusler, K.;
Pletscher, A. Swiss Med. Wkly. 2001, 131, 299−302. (c) Borel, J. F.
Wien. Klin. Wochenschr. 2002, 114, 433−437.
ASSOCIATED CONTENT
* Supporting Information
■
S
General experimental procedures, including spectroscopic and
analytical data for new compounds. This material is available
(11) (a) Ruegger, A.; Kuhn, M.; Lichti, H.; Loosli, H.; Huguenin, R.;
̈
Quiquerez, C.; von Wartburg, A. Helv. Chim. Acta 1976, 59, 1075−
1092. (b) Petcher, T. J.; Weber, H.; Ruegger, A. Helv. Chim. Acta
̈
1976, 59, 1480−1488.
(12) (a) Wenger, R. M. Helv. Chim. Acta 1983, 66, 2308−2321.
(b) Wenger, R. M. Helv. Chim. Acta 1983, 66, 2672−2702. (c) Wenger,
R. M. Helv. Chim. Acta 1984, 67, 502−525. (d) For syntheses of
related cyclosporine structures, see: Rich, D. H.; Sun, C.-Q.;
Guillaume, D.; Dunlap, B.; Evans, D. A.; Weber, A. E. J. Med. Chem.
1989, 32, 1982−1987. (e) Tantry, S. J.; Venkataramanarao, R.;
Chennakrishnareddy, G.; Sureshbabu, V. V. J. Org. Chem. 2007, 72,
9360−9363. (f) Xu, J. C.; Li, P. J. Org. Chem. 2000, 65, 2951−2958.
(13) For a historical retrospective on the clinical impact of
cyclosporine, see: Kahan, B. D. Transplant. Proc. 2009, 41, 1423−1437.
(14) (a) Handschumacher, R.; Harding, M.; Rice, J.; Drugge, R.;
Speicher, D. Science 1984, 226, 544−547. (b) Liu, J.; Farmer, J. D. Jr.;
Lane, W. S.; Friedman, J.; Weissman, I.; Schreiber, S. L. Cell 1991, 66,
807−815.
AUTHOR INFORMATION
Corresponding Author
■
ACKNOWLEDGMENTS
■
The authors are grateful for support from the NIH (CA28824
to S.J.D., 1F32CA142002-01A1 and K99GM097095-01 to
J.L.S.) and the American Cancer Society (PF-11-014-01-CDD
to P.K.P.), spectroscopic assistance from Dr. George Sukenick,
Hui Fang, and Sylvi Rusli of SKI’s NMR core facility, and Laura
Wilson and Rebecca Wilson for assistance with the preparation
of the manuscript. Dr. Ping Wang is thanked for the gift of
compound 15. We also thank Professor Gregory Verdine of
Harvard University for first calling our attention to the
cyclosporin problem in the context of isonitriles.
(15) For a review of the calcium-calcineurin-NFAT pathway, see:
Crabtree, G. R.; Olson, E. N. Cell 2002, 109, S67−S79.
(16) Evans, D. A.; Weber, A. E. J. Am. Chem. Soc. 1986, 108, 6757−
6761.
(17) Crich, D.; Sana, K.; Guo, S. Org. Lett. 2007, 9, 4423−4426.
(18) Direct conversion of 3a to 3b results in epimerization of the
substrate, presumably at Val(11).
(19) Confirmation of 19 as the major epimer formed in the coupling
of 18 and 17 was accomplished by independent synthesis of 19 via N-
terminal extension of 17 using O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-
tetramethyluronium hexafluorophosphate (HATU) for the amide
bond formations (in modest yields). See the Supporting Information
for details.
REFERENCES
■
(1) (a) Nilsson, B. L.; Soellner, M. B.; Raines, R. T. Annu. Rev.
Biophys. Biomol. Struct. 2005, 34, 91−118. (b) Kimmerlin, T.; Seebach,
D. J. Pept. Res. 2005, 65, 229−260. (c) Dawson, P. In Chemical Biology:
From Small Molecules to Systems Biology and Drug Design; Schreiber, S.
L., Kapoor, T. M., Wess, G., Eds.; Wiley-VCH Verlag GmbH:
Weinheim, Germany, 2008; Vol. 2, pp 567−592.
(2) (a) Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61,
10827−10852. (b) El-Faham, A.; Albericio, F. Chem. Rev. 2011, 111,
6557−6602. (c) Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480,
471−479.
(3) See: Albericio, F.; Bofill, J. M.; El-Faham, A.; Kates, S. A. J. Org.
Chem. 1998, 63, 9678−9683 and references therein.
(4) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. Science
1994, 266, 776−779.
(5) Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97, 2243−
2266.
(20) Wissmann, H.; Kleiner, H. Angew. Chem., Int. Ed. 1980, 19,
133−134.
(21) Traber, R.; Loosli, H.; Hofmann, H.; Kuhn, M.; Wartburg, A. V.
Helv. Chim. Acta 1982, 65, 1655−1677.
(22) See the Supporting Information for details.
(23) McDermott, J. R.; Benoiton, N. L. Can. J. Chem. 1973, 51,
2562−2570.
(24) This hypothesis makes no assumptions regarding the
mechanism of epimerization. The equilibration between 3a and epi-
3a could occur, in principle, by enolization of the activated carboxylate
species or the oxazolonium ion. However, if oxazolonium
intermediates are involved, they cannot be the predominant acylating
species in both types of couplings (isonitrile and PyBOP); otherwise,
both would give the same product. To allow for the observed
(6) Chatterjee, J.; Gilon, C.; Hoffman, A.; Kessler, H. Acc. Chem. Res.
2008, 41, 1331−1342.
(7) (a) Li, X.; Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 5446−
5448. (b) Jones, G. O.; Li, X.; Hayden, A. E.; Houk, K. N.;
Danishefsky, S. J. Org. Lett. 2008, 10, 4093−4096. (c) Li, X.; Yuan, Y.;
Berkowitz, W. F.; Todaro, L. J.; Danishefsky, S. J. J. Am. Chem. Soc.
2383
dx.doi.org/10.1021/ja2103372 | J. Am. Chem.Soc. 2012, 134, 2378−2384