of the carbon-carbon triple bonds is about 1.2 Å, which
provides a suitable geometry for π-alkylene/transition-
metal bonding interactions.2c The metal can be either in
or out of the plane of the macrocycle. The interesting
structural and conducting properties of the transition-
metal complexes derived from 1 have been extensively
explored.2b-d
A High-Yield, One-Step Synthesis of
o-Phenylene Ethynylene Cyclic Trimer via
Precipitation-Driven Alkyne Metathesis
Wei Zhang, Scott M. Brombosz,† Jose L. Mendoza,‡ and
Jeffrey S. Moore*
Roger Adams Laboratory, Departments of Chemistry and
Materials Science & Engineering, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801
Received August 23, 2005
Although there have been a series of phenylene
ethynylene trimeric macrocycles reported to date, their
preparation is mainly restricted to cross-coupling ap-
proaches, and usually only low yields are obtained.3,4 The
primary disadvantage of the coupling approach is that
the product distribution is kinetically determined. Since
these irreversible reactions do not have the ability to
correct undesired bond formations, oligomer growth that
overshoots the length of target macrocycles cannot con-
tribute to the yield of the desired product.
On the other hand, given the successful examples of
dynamic covalent chemistry in organic synthesis,5 we
envisioned a one-step approach to arylene ethynylene
macrocycles from monomers could be accomplished via
reversible alkyne metathesis. By utilizing molybdenum
catalyst that is both functional group tolerant and active
near room temperature,6 we have accomplished one-step,
gram-scale synthesis of hexameric phenylene ethynylene
macrocycles.7 Macrocycle formation is a thermodynami-
cally favored process under equilibrium control.8
A shape-persistent, conjugated o-phenylene ethynylene cyclic
trimer was prepared in one step from tetrasubstituted
benzene monomer 4 in 86% isolated yield through precipita-
tion-driven alkyne metathesis. The template-free, selective
generation of the molecular triangle 5 is a thermodynami-
cally favored process and under equilibrium control. A novel
tetrameric macrocycle 7 was generated via scrambling
metathesis between tricycle 5 and hexacycle 6 using this
dynamic covalent chemistry.
There has been growing interest in shape-persistent,
arylene ethynylene macrocycles as building blocks for
molecular materials and supramolecular chemistry.1
These macrocycles have rigid, noncollapsible hydrocarbon
backbones and are able to organize in solution, the
molten phase, and solid state (noncovalent nanotubes,
discotic liquid crystals, guest-host complexes, etc.).
Among these structures, the conjugated cyclic trimer
comprising three o-phenylene ethynylene units (1) has
attracted great interest.2 Macrocycle 1 and its derivatives
are structural units of graphyne.2a The distance from the
center of the 12-membered dehydroannulene to the center
Recently, Vollhardt et al. synthesized trimeric phe-
nylene ethynylene macrocycles through alkyne metath-
esis catalyzed by Schrock’s catalyst.9 Although the un-
(3) For reviews on synthesis of dehydrobenzoannulenes, see: (a)
Marsden, J. A.; Palmer, G. J.; Haley, M. M. Eur. J. Org. Chem. 2003,
2355-2369. (b) Youngs, W. J.; Tessier, C. A.; Bradshaw, J. D. Chem.
Rev. 1999, 99, 3153-3180. (c) Haley, M. M. Synlett 1998, 557-565
and ref 1f.
(4) For recent examples, see: (a) Li, Y.; Zhang, J.; Wang, W.; Miao,
Q.; She, X.; Pan, X. J. Org. Chem. 2005, 70, 3285-3287. (b) Iyoda, M.;
Sirinintasak, S.; Nishiyama, Y.; Vorasingha, A.; Sultana, F.; Nakao,
K.; Kuwatani, Y.; Matsuyama, H.; Yoshida, M.; Miyake, Y. Synthesis
2004, 1527-1531. (c) Nishinaga, T.; Miyata, Y.; Nodera, N.; Komatsu,
K. Tetrahedron 2004, 60, 3375-3382. (d) Iyoda, M.; Vorasingha, A.;
Kuwatani, Y.; Yoshida, M. Tetrahedron Lett. 1998, 39, 4701-4704. (e)
Solooki, D.; Ferrara, J. D.; Malaba, D.; Bradshaw, J. D.; Tessier, C.
A.; Youngs, W. J. Inorg. Synth. 1997, 31, 122-128.
† Summer intern from Illinois Wesleyan University.
‡ Summer intern from Instituto Tecnologico y de Estudios Superiores
de Monterrey Campus Monterrey.
(1) For reviews, see: (a) Ho¨ger, S. Angew. Chem., Int. Ed. 2005, 44,
3806-3808. (b) Ho¨ger, S. Chem. Eur. J. 2004, 10, 1320-1329. (c) Zhao,
D.; Moore, J. S. Chem. Commun. 2003, 807-818. (d) Yamaguchi, Y.;
Yoshida, Z. Chem. Eur. J. 2003, 9, 5430-5440. (e) Bunz, U. H. F.;
Rubin, Y.; Tobe, Y. Chem. Soc. Rev. 1999, 28, 107-119. (f) Haley, M.
M.; Pak, J. J.; Brand, S. C. Top. Curr. Chem. 1999, 201, 81-130. (g)
Moore, J. S. Acc. Chem. Res. 1997, 30, 402-413. (h) Young, J. K.;
Moore, J. S. In Modern Acetylene Chemistry; Stang, P. J., Diederich,
F., Eds.; VCH: Weinheim, 1995; Chapter 12.
(5) Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K.
M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2002, 41, 898-952.
(6) (a) Zhang, W.; Kraft, S.; Moore, J. S. Chem. Commun. 2003, 832-
833. (b) Zhang, W.; Kraft, S.; Moore, J. S. J. Am. Chem. Soc. 2004,
126, 329-335.
(7) Zhang, W.; Moore, J. S. J. Am. Chem. Soc. 2004, 126, 12796.
Bunz previously reported the synthesis of hexameric macrocycles via
alkyne metathesis. Under their conditions, which required high
temperature (150 °C), the desired products were obtained in only 0.5-
6% yields. Ge, P.-H.; Fu, W.; Herrmann, W. A.; Herdtweck, E.;
Campana, C.; Adams, R. D.; Bunz, U. H. F. Angew. Chem., Int. Ed.
2000, 39, 3607-3610.
(2) (a) Eickmeier, C.; Junga, H.; Matzger, A. J.; Scherhag, F.; Shim,
M.; Vollhardt, K. P. C. Angew. Chem., Int. Ed. 1997, 36, 2103-2108.
(b) Ferrara, J. D.; Tessier-Youngs, C.; Youngs, W. J. J. Am. Chem.
Soc. 1985, 107, 6719-6721. (c) Youngs, W. J.; Kinder, J. D.; Bradshaw,
J. D.; Tessier, C. A. Organometallics 1993, 12, 2406-2407. (d) Ferrara,
J. D.; Djebli, A.; Tessier-Youngs, C.; Youngs, W. J. J. Am. Chem. Soc.
1988, 110, 647-649.
(8) Zhang, W.; Moore, J. S. J. Am. Chem. Soc. 2005, 127, 11863-
11870.
10.1021/jo0517803 CCC: $30.25 © 2005 American Chemical Society
Published on Web 10/19/2005
10198
J. Org. Chem. 2005, 70, 10198-10201