Chemistry Letters 2001
881
Polynuclear aromatic aldehydes also afford the 1-aminoalkyl-
phosphonates in good yields (4m, 4n).
Atherton, M. J. Hall, C. H. Hassal, R. W. Lambert, W. J.
Lloyd, and P. S. Ringrose, Antimicrob. Agents Chemother.,
15, 696 (1979).
a) J. Emsley and E. D. Hall, “The Chemistry of
Phosphorus,” Harper and Row, London (1976). b) A.
Barder, Aldrichimica Acta, 21, 15 (1988).
The reactions were clean with no tar formation and inter-
estingly, no product from the 1-hydroxyphosphonate was
observed.14 Indeed, a wide range of aldehydes were converted
to corresponding 1-aminoalkylphosphonates using this reaction.
Neutral and basic aluminas and magnesium oxide are not
effective as acidic alumina and usually give low yields of the
corresponding amine since they produce 1-hydroxyphospho-
nates as the major product instead.
This solvent-free reaction method is operationally simple.
The reagent (30 mmol) was prepared by the combination of
ammonium formate (30 mmol, finely ground) and alumina
(Al2O3, acidic, 5.75 g) in a mortar and pestle by grinding them
together until a fine, homogeneous powder is obtained (5–10
min). The aldehyde (60 mmol) is added to this reagent (solid
aldehydes need to be grained before adding the diethyl phos-
phite). Diethyl phosphite was added to this mixture and the
whole was irradiated by microwave for 3–6 min using 720 W
(A kitchen-type microwave was used in all experiments). The
reaction mixture is washed with diethyl ether (200 mL). p-
TsOH·H2O (30 mmol) was added to the ethereal solution with
stirring. After completion of the reaction (1 h), the solid was
filtered and neutralized with NaOH (10%). Chromatography
through a plug of silica gel with EtOAc/n-hexane (1:9) and
evaporation of the solvent under reduced pressure gave the pure
product as oil in 63–78% yields.15
4
5
a) R. Hirschmann, A. B. III Smith, C. M. Taylor, P. A.
Benkovic, S. D. Taylor, K. M. Yager, P. A. Sprengler, and
S. J. Venkovic, Science, 265, 234 (1994). b) A. B. III
Smith, C. M. Taylor, S. J. Venkovic, and R. Hirschmann,
Tetrahedron Lett., 37, 6854 (1994).
a) D. Y. Kim and D. Yong Rhie, Tetrahedron, 53, 13603
(1997). b) K. Afarinkia, J. I. G. Cadogan, and C. W. Rees,
Synlett, 1990, 415. c) C. Yuan, S. Chen, and G. Wang,
Synthesis, 1991, 490. d) H. Hyun-Joon and N. Gong-Sil,
Synth. Commun., 22, 1143 (1992). e) H. Sasai, A. Shigeru,
Y. Tahara, and M. Shibasaki, J. Org. Chem., 60, 6656
(1995). f) A. Heydari, A. Karimian, and J. Ipaktschi,
Tetrahedron Lett., 39, 6729 (1998). g) B. Dhawan and D.
Redmore, Phosphorus and Sulfur, 32, 119 (1987). h) R.
Engel, Org. React., 36, 176 (1988)
a) M. E. Chalmers and G. M. Kosolapoff, J. Am. Chem.
Soc., 75, 5278 (1953). b) H. Takahashi, M. Yoshioka, N.
Imai, K. Onimura, and S. Kobayashi, Synthesis, 1994, 763.
a) A. Fadel, R. Yefash, and J. Saluan, Synthesis, 1987, 37;
b) G. Rosini, R. Galarini, E. Marotta, and R. Righi, J. Org.
Chem., 55, 781 (1990); c) M. Kodomari, T. Sakamoto, and
S. Yoshitomi, J. Chem. Soc., Chem. Commun., 1990, 701;
d) P. J. Kropp, K. A. Daus, S. D. Crawford, M. W.
Tubergren, K. D. Kepler, S. L. Craig, and V. P. Wilson, J.
Am. Chem. Soc., 112, 7433 (1990); e) G. Hondrogiannis,
R. M. Pagni, G. W. Kabalka, P. Anisoki, and R. Kurt,
Tetrahedron Lett., 31, 5433 (1990); d) H. K. Pantney,
Tetrahedron Lett., 32, 2259 (1991); f) F. Pauter and M.
Daudon, Tetrahedron Lett., 32, 1457 (1991).
6
7
8
In summary, the simple work-up, low consumption of sol-
vent, relatively fast reaction rate, mild reaction conditions, good
yields and selectivity of the reaction make this method an
attractive and a useful contribution to present methodologies.
The Institute for Advanced Studies in Basic Sciences
(IASBS) is thanked for supporting this work.
References and Notes
9
A. R. Sardarian and B. Kaboudin, Synth. Commun., 27, 543
(1997).
1
P. A. Bartlett, J. E. Hanson, and P. P. Giannousis, J. Org.
Chem., 55, 6268 (1990).
10 A. R. Sardarian and B. Kaboudin, Tetrahedron Lett., 38,
2543 (1997).
11 B. Kaboudin, J. Chem. Res., Synop., 1999, 402.
12 B. Kaboudin, Tetrahedron Lett., 41, 3169 (2000).
13 R. W. Ratcliffe and B. G. Christensen, Tetrahedron Lett.,
46, 4649 (1973).
2
a) M. C. Allen, W. Fuhrer, B. Tuck, R. Wade, and J. M.
Wood, J. Med. Chem., 32, 1652 (1989). b) E. W. Logusch,
D. M. Walker, J. F. McDonald, G. C. Leo, and J. E. Grang,
J. Org. Chem., 53, 4069 (1988). c) P. P. Giannousis and P.
A. Bartlett, J. Med. Chem., 30, 1603 (1987).
3
a) F. R. Atherton, C. H. Hassal, and R. W. Lambert, J.
Med. Chem., 29, 29 (1986). b) J. G. Allen, F. R. Atherton,
C. H. Hassal, R. W. Lambert, L. J. Nisbet, and P. S.
Ringrose, Nature, 272, 56 (1978). c) J. G. Allen, F. R.
Atherton, M. J. Hall, C. H. Hassal, R. W. Lambert, L. J.
Nisbet, and P. S. Ringrose, Antimicrob. Agents
Chemother., 15, 684 (1979). d) F. R. Atherton, M. J. Hall,
C. H. Hassal, R. W. Lambert, and P. S. Ringrose,
Antimicrob. Agents Chemother., 15, 677 (1979). e) F. R.
14 R. Gancarz and I. Gancarz, Tetrahedron Lett., 34, 145
(1993).
15 All products gave satisfactory spectral data in accord with
1
the assigned structures. For 4d as an example H NMR
(CDCl3/TMS): δ 1.15 (3H, t, J = 7.1 Hz), 1.28 (3H, t, J =
7.1), 2.75 (2H, br, –NH2); 3.94 (1H, ddq, J = 7.1, 11.2, 8.1
Hz), 4.09 (1H, ddq, J = 7.1, 8.1, 11.2 Hz), 4.18 (2H, m),
4.88 (1H, d, J = 17.8 Hz), 7.45 (5H, m); IR (neat): 3377,
3295 (–NH2), 1237 (P=O), 1103–997 (P–O–Et) cm–1.