LETTER
Reduced Diaza-b3-Dipeptides
2593
Table 1 Yields of Reduced Diaza-b3-dipeptides 6–8
Reduced diaza-b3-dipeptides
R1
R2
R3
H
Yield (%)
6a
6b
Fmoc-aza-b3-Leu-y(CH2NH)-aza-b3-Ala-OBn
CH2CH(CH3)2
CH2CH(CH3)2
CH3
96
72
Fmoc-aza-b3-Leu-y(CH2NH)-aza-b3-
CH2C6H4OCH2OEt
H
Tyr(OCH2OEt)-OBn
7a
7b
Fmoc-aza-b3-Leu-y(CH2NBoc)-aza-b3-Ala-OBn
CH2CH(CH3)2
CH2CH(CH3)2
CH3
Boc
Boc
66
41
Fmoc-aza-b3-Leu-y(CH2NBoc)-aza-b3-
Tyr(OCH2OEt)-OBn
CH2C6H4OCH2OEt
8a
8b
Fmoc-aza-b3-Leu-y(CH2NBoc)-aza-b3-Ala-OH
CH2CH(CH3)2
CH2CH(CH3)2
CH3
Boc
Boc
72
75
Fmoc-aza-b3-Leu-y(CH2NBoc)-aza-b3-
Tyr(OCH2OEt)-OH
CH2C6H4OCH2OEt
(2) (a) Martinez, J.; Bali, J. P.; Rodriguez, M.; Castro, B.;
Magous, R.; Laur, J.; Lignon, M. F. J. Med. Chem. 1985, 28,
1874. (b) Quesnel, A.; Zerbib, A.; Connan, F.; Guillet, J. G.;
Briand, J. P.; Choppin, J. J. Peptide Sci. 2001, 7, 157.
(c) Guichard, G.; Calbo, S.; Muller, S.; Kourilsky, P.;
Briand, J.-P.; Abastado, J.-P. J. Biol. Chem. 1995, 270,
26057. (d) Benkirane, N.; Guichard, G.; Briand, J.-P.;
Muller, S. J. Biol. Chem. 1996, 271, 33218.
(3) (a) Nielsen, P. E.; Haaima, G. Chem. Soc. Rev. 1997, 73.
(b) Planas, M.; Bardaji, E.; Jensen, K. J.; Barany, G. J. Org.
Chem. 1999, 64, 7281. (c) Uhlmann, E.; Peyman, A.;
Breipohl, G.; Will, D. W. Angew. Chem. Int. Ed. 1998, 37,
2796.
(4) (a) Wittung, P.; Kajanus, J.; Edwards, K.; Nielsen, P.;
Norden, B.; Malmström, B. G. FEBS Lett. 1995, 365, 27.
(b) Hanvey, J. C.; Peffer, N. J.; Bisi, J. E.; Thomson, S. A.;
Cadilla, R.; Josey, J. A.; Ricca, D. J.; Hassman, F.; Bonham,
M. A.; Au, K. G.; Carter, S. G.; Bruckenstein, D. A.; Boyd,
A. L.; Noble, S. A.; Babiss, L. E. Science 1992, 258, 1481.
(5) (a) Kim, S. H.; Nielsen, P. E.; Egholm, M.; Buchardt, O. J.
Am. Chem. Soc. 1993, 115, 6477. (b) Bentin, T.; Nielsen, P.
E. J. Am. Chem. Soc. 2003, 125, 6378.
(6) (a) De Koning, M. C.; Filippov, D. V.; Meeuwenoord, N.;
Overhand, M.; van der Marel, G. A.; van Boom, J. H. Synlett
2001, 151. (b) Simmons, C. G.; Pitts, A. E.; Mayfield, L. D.;
Shay, J. W.; Corey, D. R. Bioorg. Med. Chem. Lett. 1997, 7,
3001. (c) Koch, T.; Naesby, M.; Wittung, P.; Jørgensen, M.;
Larsson, C.; Buchardt, O.; Stanley, C. J.; Nordén, B.;
Nielsen, P. E.; Ørum, H. Tetrahedron Lett. 1995, 36, 6933.
(7) (a) Petersen, K. H.; Jensen, D. K.; Nielsen, P. E.; Egholm,
M.; Buchardt, O. Bioorg. Med. Chem. Lett. 1995, 5, 1119.
(b) Bergmann, F.; Bannwarth, W.; Tam, S. Tetrahedron
Lett. 1995, 36, 6823.
(8) Haaima, G.; Lohse, O.; Buchardt, O.; Nielsen, P. E. Angew.
Chem., Int. Ed. Engl. 1996, 35, 1939.
(9) D’Costa, M.; Kumar, V. A.; Ganesh, K. N. Org. Lett. 1999,
1, 1513.
(10) Cheguillaume, A.; Doubli-Bounoua, I.; Baudy-Floc’h, M.;
Le Grel, P. Synlett 2000, 331.
(11) Mancuso, A. J.; Swern, D. Synthesis 1981, 165.
(12) To a solution of CH2Cl2 (20 mL, freshly distilled on CaH2),
under nitrogen atmosphere, was added oxalyl chloride
freshly distilled (1.35 mL, 1.2 equiv). The solution was
cooled at –78 °C, and DMSO (2.23 mL, 2.4 equiv, freshly
distilled on KOH) was carefully added. The solution was
stirred for 15 min and Fmoc-aza-b3-Leu alcohol (2, 4.63 g, 1
equiv) in CH2Cl2 (20 mL) was added dropwise, the mixture
was stirred for 15 min at –78 °C. After adding Et3N (5.52
mL, 3 equiv, freshly distilled on CaH2) the mixture was
given up to r.t. during 45 min. Then, CH2Cl2 was added (50
mL) with a solution of NaHCO3 (1 M, 20 mL). The organic
layer was washed with brine, dried over Na2SO4 and
concentrated to give a crude oil suitable for the next step.
Purification by chromatography on silica gel (EtOAc–PE
3:7) gave 40% yield of 3a (1.84 g). 1H NMR (CDCl3): d =
0.95 (br, 6 H, CH3), 1.69 (m, 1 H, CH), 2.67 (br, 2 H, CH2),
3.72 (br, 2 H, CH2), 4.23 (br t, 2 H, J = 6.3 Hz, CH), 4.53 (br
d, 2 H, J = 6.3 Hz, CH2), 6.39 (br, 1 H, NH), 7.31–7.83 (m,
8 H, CHar), 9.12 (s, 1 H, CHO) ppm. The crude oil was
diluted in CH2Cl2 (50 mL) and aza-b3-Tyr-OBn (0.9 equiv)
was added, the mixture was stirred overnight at r.t. on
Na2SO4. After filtration, the solution was concentrated and
purified by chromatography on silica gel (EtOAc–PE 3:7) to
give 2.64 g (55%) of corresponding hydrazone (5b) as a
colorless oil. 1H NMR (CDCl3): d = 0.93 (d, 6 H, J = 6.6 Hz,
CH3), 1.23 (t, 3 H, J = 7.0 Hz, CH3), 1.72 (m, 1 H, CH), 2.47
(br, 2 H, CH2), 3.50 (s, 2 H, CH2), 3.73 (q, 2 H, J = 7.0 Hz,
CH2), 3.97 (s, 2 H, CH2), 4.24 (t, 1 H, J = 6.9 Hz, CH), 4.36
(s, 2 H, CH2), 4.42 (d, 2 H, J = 6.9 Hz, CH2), 5.11 (s, 2 H,
CH2), 5.18 (s, 2 H, CH2), 5.82 (br s, 1 H, NH), 6.66 (br, 1 H,
CH), 6.93–7.80 (m, 17 H, CHar) ppm. 13C NMR (CDCl3):
d = 170.08, 156.85, 155.81, 144.07, 141.38, 135.63, 131.66,
129.15, 128.61, 128.37, 127.73, 116.45, 127.73, 127.11,
125.28, 120.00, 93.14, 66.49, 65.20, 64.22, 60.44, 56.54,
54.61, 47.37, 26.37, 20.84, 15.21 ppm. HRMS (ESI): m/z
calcd for C40H46N4O6Na [M + Na]+: 701.33151; found:
701.3331 (2 ppm).
(13) The hydrazone 5b (2.64 g, 3.9 mmol) was dissolved in
MeOH (20 mL). Sodium cyanoborohydride (0.62 g, 2.5
equiv) was added and pH was brought to 3 by slowly adding
a solution of 2 N HCl. The mixture was stirred for 2 h, then
the pH was adjusted to 1. After 10 min of stirring, the
solution was neutralized with solid NaHCO3, the mixture
was filtrated, concentrated under vacum and the residue was
taken up with EtOAc (50 mL) and washed with H2O and
brine. The organic layer was dried over Na2SO4 and the
solvent was removed to give crude oil which was purified by
chromatography on silica gel (EtOAc–PE 3:7 and 5:5) to
give 1.91 g (72%) of corresponding hydrazine 6b as a
colorless oil. 1H NMR (CDCl3): d = 0.93 (d, 6 H, J = 6.7 Hz,
CH3), 1.24 (t, 3 H, J = 7.0 Hz, CH3), 1.66 (m, 1 H, CH), 2.43
(d, 2 H, J = 6.6 Hz, CH2), 2.86 (br, 4 H, CH2), 3.45 (s, 2 H,
CH2), 3.74 (q, 2 H, J = 7.0 Hz, CH2), 3.90 (s, 2 H, CH2), 4.20
(t, 1 H, J = 6.3 Hz, CH), 4.48 (d, 2 H, J = 6.3 Hz, CH2), 5.16
(s, 2 H, CH2), 5.21 (s, 2 H, CH2), 5.75 (br s, 1 H, NH), 6.95–
7.82 (m, 17 H, CHar) ppm. 13C NMR (CDCl3): d = 171.02,
Synlett 2005, No. 17, 2591–2594 © Thieme Stuttgart · New York