Chemistry & Biology
Gluten Peptide Analogs as Biomarkers
Madara, J.L., and Stafford, J. (1989). Interferon-gamma directly affects barrier
function of cultured intestinal epithelial monolayers. J. Clin. Invest. 83, 724–
727.
Raki, M., Tollefsen, S., Molberg, O., Lundin, K.E., Sollid, L.M., and Jahnsen, F.L.
(2006). A unique dendritic cell subset accumulates in the celiac lesion and effi-
ciently activates gluten-reactive T cells. Gastroenterology 131, 428–438.
Raki, M., Fallang, L.E., Brottveit, M., Bergseng, E., Quarsten, H., Lundin, K.E.,
and Sollid, L.M. (2007). Tetramer visualization of gut-homing gluten-specific
T cells in the peripheral blood of celiac disease patients. Proc. Natl. Acad.
Sci. USA 104, 2831–2836.
Maiuri, L., Ciacci, C., Ricciardelli, I., Vacca, L., Raia, V., Auricchio, S., Picard,
J., Osman, M., Quaratino, S., and Londei, M. (2003). Association between
innate response to gliadin and activation of pathogenic T cells in coeliac
disease. Lancet 362, 30–37.
Schumann, M., Richter, J.F., Wedell, I., Moos, V., Zimmermann-Kordmann,
M., Schneider, T., Daum, S., Zeitz, M., Fromm, M., and Schulzke, J.D.
(2008). Mechanisms of epithelial translocation of the alpha(2)-gliadin-33mer
in coeliac sprue. Gut 57, 747–754.
March, J.B. (2003). High antigliadin IgG titers in laboratory rabbits fed a wheat-
containing diet: a model for celiac disease? Dig. Dis. Sci. 48, 608–610.
Matysiak-Budnik, T., Candalh, C., Dugave, C., Namane, A., Cellier, C.,
Cerf-Bensussan, N., and Heyman, M. (2003). Alterations of the intestinal trans-
port and processing of gliadin peptides in celiac disease. Gastroenterology
125, 696–707.
Scopes, R.K. (1974). Measurement of protein by spectrophotometry at 205
nm. Anal. Biochem. 59, 277–282.
See, J., and Murray, J.A. (2006). Gluten-free diet: the medical and nutrition
Matysiak-Budnik, T., Moura, I.C., Arcos-Fajardo, M., Lebreton, C., Menard, S.,
Candalh, C., Ben-Khalifa, K., Dugave, C., Tamouza, H., van Niel, G., et al.
(2008). Secretory IgA mediates retrotranscytosis of intact gliadin peptides
via the transferrin receptor in celiac disease. J. Exp. Med. 205, 143–154.
management of celiac disease. Nutr. Clin. Pract. 21, 1–15.
Shan, L., Molberg, O., Parrot, I., Hausch, F., Filiz, F., Gray, G.M., Sollid, L.M.,
and Khosla, C. (2002). Structural basis for gluten intolerance in celiac sprue.
Science 297, 2275–2279.
Molberg, O., McAdam, S.N., Korner, R., Quarsten, H., Kristiansen, C., Madsen,
L., Fugger, L., Scott, H., Noren, O., Roepstorff, P., et al. (1998). Tissue trans-
glutaminase selectively modifies gliadin peptides that are recognized by
gut-derived T cells in celiac disease. Nat. Med. 4, 713–717.
Shan, L., Marti, T., Sollid, L.M., Gray, G.M., and Khosla, C. (2004). Comparative
biochemical analysis of three bacterial prolyl endopeptidases: implications for
coeliac sprue. Biochem. J. 383, 311–318.
Shan, L., Qiao, S.W., Arentz-Hansen, H., Molberg, O., Gray, G.M., Sollid, L.M.,
and Khosla, C. (2005). Identification and analysis of multivalent proteolytically
resistant peptides from gluten: implications for celiac sprue. J. Proteome Res.
4, 1732–1741.
Molberg, Ø., McAdam, S., Lundin, K., and Sollid, L. (2000). Studies of gliadin-
specific T cells in celiac disease. In Celiac disease: Methods and protocols,
M.N. Marsh, ed. (Totowa, NJ: Humana), pp. 105–124.
Moron, B., Cebolla, A., Manyani, H., Alvarez-Maqueda, M., Megias, M.,
Thomas Mdel, C., Lopez, M.C., and Sousa, C. (2008). Sensitive detection of
cereal fractions that are toxic to celiac disease patients by using monoclonal
antibodies to a main immunogenic wheat peptide. Am. J. Clin. Nutr. 87,
405–414.
Siegel, M., Bethune, M.T., Gass, J., Ehren, J., Xia, J., Johannsen, A., Stuge,
T.B., Gray, G.M., Lee, P.P., and Khosla, C. (2006). Rational design of combina-
tion enzyme therapy for celiac sprue. Chem. Biol. 13, 649–658.
Silvester, J.A., and Rashid, M. (2007). Long-term follow-up of individuals with
celiac disease: an evaluation of current practice guidelines. Can. J. Gastroen-
terol. 21, 557–564.
Musch, M.W., Clarke, L.L., Mamah, D., Gawenis, L.R., Zhang, Z., Ellsworth,
W., Shalowitz, D., Mittal, N., Efthimiou, P., Alnadjim, Z., et al. (2002). T cell acti-
vation causes diarrhea by increasing intestinal permeability and inhibiting
epithelial Na+/K+-ATPase. J. Clin. Invest. 110, 1739–1747.
Sollid, L.M. (2002). Coeliac disease: dissecting a complex inflammatory
disorder. Nat. Rev. Immunol. 2, 647–655.
Sollid, L.M., Markussen, G., Ek, J., Gjerde, H., Vartdal, F., and Thorsby, E.
(1989). Evidence for a primary association of celiac disease to a particular
HLA-DQ alpha/beta heterodimer. J. Exp. Med. 169, 345–350.
Nilsen, E.M., Lundin, K.E., Krajci, P., Scott, H., Sollid, L.M., and Brandtzaeg, P.
(1995). Gluten specific, HLA-DQ restricted T cells from coeliac mucosa
produce cytokines with Th1 or Th0 profile dominated by interferon gamma.
Gut 37, 766–776.
Stepniak, D., Spaenij-Dekking, L., Mitea, C., Moester, M., de Ru, A., Baak-
Pablo, R., van Veelen, P., Edens, L., and Koning, F. (2006). Highly efficient
gluten degradation with a newly identified prolyl endoprotease: implications
for celiac disease. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G621–G629.
Nilsen, E.M., Jahnsen, F.L., Lundin, K.E., Johansen, F.E., Fausa, O., Sollid,
L.M., Jahnsen, J., Scott, H., and Brandtzaeg, P. (1998). Gluten induces an
intestinal cytokine response strongly dominated by interferon gamma in
patients with celiac disease. Gastroenterology 115, 551–563.
Sturgess, R., Day, P., Ellis, H.J., Lundin, K.E., Gjertsen, H.A., Kontakou, M.,
and Ciclitira, P.J. (1994). Wheat peptide challenge in coeliac disease. Lancet
343, 758–761.
Paterson, B.M., Lammers, K.M., Arrieta, M.C., Fasano, A., and Meddings, J.B.
(2007). The safety, tolerance, pharmacokinetic and pharmacodynamic effects
of single doses of AT-1001 in coeliac disease subjects: a proof of concept
study. Aliment. Pharmacol. Ther. 26, 757–766.
Troncone, R., Gianfrani, C., Mazzarella, G., Greco, L., Guardiola, J., Auricchio,
S., and De Berardinis, P. (1998). Majority of gliadin-specific T-cell clones from
celiac small intestinal mucosa produce interferon-gamma and interleukin-4.
Dig. Dis. Sci. 43, 156–161.
Peyrin-Biroulet, L., Desreumaux, P., Sandborn, W.J., and Colombel, J.F.
(2008). Crohn’s disease: beyond antagonists of tumour necrosis factor. Lancet
372, 67–81.
Vora, H., McIntire, J., Kumar, P., Deshpande, M., and Khosla, C. (2007). A
scaleable manufacturing process for pro-EP-B2, a cysteine protease from
barley indicated for celiac sprue. Biotechnol. Bioeng. 98, 177–185.
Pietzak, M.M. (2005). Follow-up of patients with celiac disease: achieving
compliance with treatment. Gastroenterology 128, S135–S141.
Wapenaar, M.C., van Belzen, M.J., Fransen, J.H., Sarasqueta, A.F., Houwen,
R.H., Meijer, J.W., Mulder, C.J., and Wijmenga, C. (2004). The interferon
gamma gene in celiac disease: augmented expression correlates with tissue
damage but no evidence for genetic susceptibility. J. Autoimmun. 23, 183–190.
Piper, J.L., Gray, G.M., and Khosla, C. (2002). High selectivity of human tissue
transglutaminase for immunoactive gliadin peptides: implications for celiac
sprue. Biochemistry 41, 386–393.
Piper, J.L., Gray, G.M., and Khosla, C. (2004). Effect of prolyl endopeptidase
on digestive-resistant gliadin peptides in vivo. J. Pharmacol. Exp. Ther. 311,
213–219.
Watts, T., Berti, I., Sapone, A., Gerarduzzi, T., Not, T., Zielke, R., and Fasano,
A. (2005). Role of the intestinal tight junction modulator zonulin in the patho-
genesis of type I diabetes in BB diabetic-prone rats. Proc. Natl. Acad. Sci.
USA 102, 2916–2921.
Qiao, S.W., Bergseng, E., Molberg, O., Jung, G., Fleckenstein, B., and Sollid,
L.M. (2005). Refining the rules of gliadin T cell epitope binding to the disease-
associated DQ2 molecule in celiac disease: importance of proline spacing and
glutamine deamidation. J. Immunol. 175, 254–261.
Xia, J., Sollid, L.M., and Khosla, C. (2005). Equilibrium and kinetic analysis of
the unusual binding behavior of a highly immunogenic gluten peptide to
HLA-DQ2. Biochemistry 44, 4442–4449.
Quarsten, H., Molberg, O., Fugger, L., McAdam, S.N., and Sollid, L.M. (1999).
HLA binding and T cell recognition of a tissue transglutaminase-modified
gliadin epitope. Eur. J. Immunol. 29, 2506–2514.
Xia, J., Siegel, M., Bergseng, E., Sollid, L.M., and Khosla, C. (2006). Inhibition
of HLA-DQ2-mediated antigen presentation by analogues of a high affinity 33-
residue peptide from alpha2-gliadin. J. Am. Chem. Soc. 128, 1859–1867.
Chemistry & Biology 16, 868–881, August 28, 2009 ª2009 Elsevier Ltd All rights reserved 881