C. F. Morelli, A. Saladino, G. Speranza, P. Manitto
FULL PAPER
yield. H NMR (400 MHz, CDCl3): δ = 0.97 [d, J = 6.8 Hz, 6 H,
1
Acknowledgments
CH2CH(CH3)2], 1.45 (t, J = 7.2 Hz, 3 H, CH2CH3), 2.00 [m, 1 H,
CH2CH(CH3)2], 2.85 [d, J = 7.6 Hz, 2 H, CH2CH(CH3)2], 3.94 (s,
3 H, N–CH3), 4.46 (q, 2 H, J = 7.2 Hz, CH2CH3) ppm. 13C NMR
(400 MHz, CDCl3): δ = 14.37 (CH2CH3), 22.68 [CH2CH(CH3)2],
29.67 [CH2CH(CH3)2], 34.91 [CH2CH(CH3)2], 38.35 (N–CH3),
63.40 (CH2CH3), 110.36 (pyrazole C4), 143.82 (pyrazole C3),
149.67 (pyrazole C5), 161.18 (COO), 167.94 (COO) ppm. MS-
APCI: m/z = 255 [MH+], 209 [M+ – EtOH], 191 [M+ – EtOH –
H2O].
Authors thank MIUR for financial support. A postgraduate fel-
lowship from Consorzio COMBIGEN (to A.S.) is gratefully ac-
knowledged.
[1]
[2]
P. Seneci, Solid-Phase Synthesis and Combinatorial Technol-
ogies, Wiley Intersciences, John Wiley & Sons, New York, 2000.
a) R. E. Dolle, J. Comb. Chem. 2004, 6, 623–679; b) K. S. Lam,
M. Lebl, V. Krchnˇák, Chem. Rev. 1997, 97, 411–448.
4-(Ethoxycarbonyl)-5-isobutyl-1-(4-methoxyphenyl)-1H-pyrazole-3-
carboxylic Acid (12m): Obtained from 10c and (4-methoxyphenyl)-
hydrazine hydrochloride in 50% overall yield. 1H NMR (400 MHz,
CDCl3): δ = 0.77 [d, J = 6.6 Hz, 6 H, CH2CH(CH3)2], 1.48 (t, J =
7.2 Hz, 3 H, CH2CH3), 1.85 [m, 1 H, CH2CH(CH3)2], 2.85 [d, J =
7.2 Hz, 2 H, CH2CH(CH3)2], 3.89 (s, 3 H, OMe), 4.51 (q, J =
7.2 Hz, 2 H, CH2CH3), 7.00 (m, 2 H, aromatic H), 7.30 (m, 2 H,
aromatic H) ppm. 13C NMR (400 MHz, CDCl3): δ = 14.41
(CH2CH3), 22.57 [CH2CH(CH3)2], 29.66 [CH2CH(CH3)2], 34.99
[CH2CH(CH3)2], 55.01 (OMe), 63.42 (CH2CH3), 110.54 (pyrazole
C4), 114.74, 128.58, 131.31 (aromatic C), 144.65 (pyrazole C3),
150.75 (pyrazole C5), 160.89 (aromatic C or COO), 160.91 (aro-
matic C or COO), 168.10 (COO) ppm. MS-APCI: m/z = 347
[MH+], 301 [M+ – EtOH], 283 [M+ – EtOH – H2O].
[3]
[4]
L. A. Thompson, J. A. Ellman, Chem. Rev. 1996, 96, 555–600.
a) V. Krchnˇák, M. W. Holladay, Chem. Rev. 2002, 102, 61–91;
b) . G. Franzén, J. Comb. Chem. 2000, 2, 195–214; c) J. W.
Corbett, Org. Prep. Proced. Int. 1998, 30, 489–550; d) A. Nefzi,
J. M. Ostresh, R. A. Houghten, Chem. Rev. 1997, 97, 449–472.
a) N. Kudo, S. Furuta, M. Taniguchi, T. Endo, K. Sato, Chem.
Pharm. Bull. 1999, 47, 857–868; b) T. D. Penning, J. J. Talley,
S. R. Bertenshow, J. S. Carter, P. W. Collins, S. Docter, M. J.
Graneto, L. F. Lee, J. W. Malecha, J. M. Miyashiro, R. S. Rog-
ers, D. J. Rogier, S. S. Yu, G. D. Anderson, E. G. Burton, J.
Nita Cogburn, S. A. Gregory, C. M. Koboldt, W. E. Perkins,
K. Seibert, A. W. Veenhuizen, Y. Y. Zhang, P. C. Isakson, J.
Med. Chem. 1997, 40, 1347–1365; c) C. Almansa, L. A. Gómez,
F. L. Cavalcanti, A. F. de Arriba, J. Garcia-Rafanell, J. Forn, J.
Med. Chem. 1997, 40, 547–558; d) R. Lan, Q. Liu, P. Fan, S.
Lin, S. R. Fernando, D. McCallion, R. Pertwee, A. Makri-
yannis, J. Med. Chem. 1999, 42, 769–776; e) M. J. Genin, C.
Biles, B. J. Keiser, S. M. Poppe, S. M. Swaney, W. Gary Tarpley,
Y. Yagi, D. L. Romero, J. Med. Chem. 2000, 43, 1034–1040;
f) T. van Herk, J. Brussee, A. M. C. H. van den Nieuwendijk,
P. A. M. van der Klein, A. P. Ijzerman, C. Stannek, A. Bur-
meister, A. Lorenzen, J. Med. Chem. 2003, 46, 3945–3951; g)
A. Tanitame, Y. Oyamada, K. Ofuji, M. Fujimoto, K. Suzuki,
T. Ueda, H. Terauchi, M. Kawasaki, K. Nagai, M. Wachi, J.
Yamagishi, Bioorg. Med. Chem. 2004, 12, 5515–5524; h) A. A.
Bekhit, T. Abdel-Aziem, Bioorg. Med. Chem. 2004, 12, 1935–
1945; i) M. E. Y. Francisco, H. H. Seltzman, A. F. Gilliam,
R. A. Mitchell, S. L. Rider, R. G. Pertwee, L. A. Stevenson,
B. F. Thomas, J. Med. Chem. 2002, 45, 2708–2719; j) R. Ka-
toch-Rouse, O. A. Pavlova, T. Caulder, A. F. Hoffman, A. G.
Mukhin, A. G. Horti, J. Med. Chem. 2003, 46, 642–645; k)
P. W. Baures, Org. Lett. 1999, 2, 249–252; l) Q. Han, C. Chang,
R. Li, Y. Ru, P. K. Jadhav, P. Y. S. Lam, J. Med. Chem. 1998,
41, 2019–2028.
a) J. Y. Hwang, H. Choi, D. Lee, S. Yoo, Y. Gong, J. Comb.
Chem. 2005, 7, 136–141; b) C. Vanier, A. Wagner, C. Mioskow-
ski, J. Comb. Chem. 2004, 6, 846850; c) L. De Luca, G. Giaco-
melli, A. Porcheddu, M. Salaris, M. Taddei, J. Comb. Chem.
2003, 5, 465–471; d) J. Westman, R. Lundin, Synthesis 2003,
1025–1030; e) A. C. Donohue, S. Pallich, T. D. McCarthy, J.
Chem. Soc. Perkin Trans. 1 2001, 2817–2822; f) K. Washizuka,
K. Nagai, S. Minakata, I. Ryu, M. Komatsu, Tetrahedron Lett.
2000, 41, 691–695; g) D. M. Shen, M. Shu, K. T. Chapman,
Org. Lett. 2000, 2, 2789–2792; h) S. R. Stauffer, J. A. Katzenel-
lenbogen, J. Comb. Chem. 2000, 2, 318–329; i) P. Grosche, A.
Höltzel, T. B. Walk, A. W. Trautwein, G. Jung, Synthesis 1999,
1961–1970; j) A. L. Marzinzik, E. R. Felder, J. Org. Chem.
1998, 63, 723–727; k) R. D. Wilson, S. P. Watson, S. A. Rich-
ards, Tetrahedron Lett. 1998, 39, 2827–2830; l) S. P. Watson,
R. D. Wilson, D. B. Judd, S. A. Richards, Tetrahedron Lett.
1997, 38, 9065–9068; m) A. L. Marzinzik, E. R. Felder, Mole-
cules 1997, 2, 17–30; n) A. L. Marzinzik, E. R. Felder, Tetrahe-
dron Lett. 1996, 37, 1003–1006.
[5]
1-(4-Chlorophenyl)-4-(ethoxycarbonyl)-5-isobutyl-1H-pyrazole-3-
carboxylic Acid (12n): Obtained from 10c and 4-chlorophenylhy-
drazine hydrochloride in 35% overall yield. 1H NMR (300 MHz,
CDCl3): δ = 0.72 [d, J = 6.4 Hz, 6 H, CH2CH(CH3)2], 1.44 (t, J =
7.2 Hz, 3 H, CH2CH3), 1.80 [m, 1 H, CH2CH(CH3)2], 2.83 [d, J =
7.2 Hz, 2 H, CH2CH(CH3)2], 4.48 (q, J = 7.2 Hz, 2 H, CH2CH3),
7.31 (m, 2 H, aromatic H), 7.46 (m, 2 H, aromatic H) ppm. 13C
NMR (300 MHz, CDCl3 ): δ = 13. 97 (CH2 CH3 ), 22.18
[CH2CH(CH3)2], 29.40 [CH2CH(CH3)2], 34.53 [CH2CH(CH3)2],
63.25 (CH2CH3), 110.32 (pyrazole C4), 128.18, 129.65, 136.50,
138.07 (aromatic C), 145.40 (pyrazole C3), 150.36 (pyrazole C5),
160.53 (COO), 167.18 (COO) ppm. MS-APCI: m/z = 351 [MH+],
305 [M+ – EtOH], 287 [M+ – EtOH – H2O].
Synthesis of Diethyl 2-Amino-3-(2,2-dimethylpropanoyl)-2-butene-
dioate (15): To a solution of ethyl 4,4-dimethyl-3-oxo-pentanoate
(14b) (1.11 g, 6.45 mmol) and ethyl cyanoformate (2) (0.70 mL,
7.10 mmol) in dry dichloromethane (1.5 mL), zinc acetylacetonate
(34 mg, 0.13 mmol) was added, and the mixture was stirred at room
temperature for 1.5 h. The mixture was diluted with ethyl acetate
(10 mL) and filtered through celite. The filtrate was evaporated un-
der reduced pressure and the residue was chromatographed (silica
gel, ethyl acetate/hexane, 2:8) to give the title compound. White
powder, 1.57 g, 90% yield. 1H NMR (300 MHz, CDCl3): two in-
separable geometric isomers were present in solution (see ref.[8a]).
Major isomer (85%) showed resonances at δ = 1.21 (s, 9 H, CMe3),
1.28 (t, J = 7.1 Hz, 3 H, CH2CH3), 1.35 (t, J = 7.1 Hz, 3 H,
CH2CH3), 4.20 (q, J = 7.1 Hz, 2 H, CH2CH3), 4.32 (q, J = 7.1 Hz,
2 H, CH2CH3), 6.75 (br. s, 2 H, NH2) ppm. The minor isomer
(15 %) showed distinguishable resonances at δ = 1.22 (s, 9 H,
CMe3), 7.75 (br. s, 2 H, NH2) ppm. 13C NMR (300 MHz, CDCl3):
two inseparable geometric isomers were present in solution. Major
isomer showed resonances at δ = 13.71 (CH2CH3), 13.99
(CH2CH3), 28.31 (CMe3), 45.29 (CMe3), 60.19 (CH2CH3), 62.71
(CH2CH3), 104.48 (C3), 145.77 (C2), 162.64 (COO), 167.32 (COO),
210.29 (CO) ppm. The minor isomer showed distinguishable reso-
nances at δ = 27.25 (CMe3), 43.77 (CMe3), 60.60 (CH2CH3), 63.03
(CH2CH3) ppm. C13H21NO5 (271.14): calcd. C 57.55, H 7.80, N
5.16; found C 57.81, H 8.00, N 4.97.
[6]
[7]
[8]
A. C. Veronese, R. Callegari, C. F. Morelli, C. B. Vicentini, Tet-
rahedron 1997, 53, 14497–14506.
a) A. C. Veronese, V. Gandolfi, B. Longato, B. Corain, M. Bas-
ato, J. Mol. Catal. 1989, 54, 73–80; b) B. Corain, M. Basato,
A. C. Veronese, J. Mol. Catal. 1993, 81, 133–155.
4626
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2005, 4621–4627