Scheme 1. Diastereoselective Aziridination with a Chiral
Scheme 2. Preparation of
Sulfur(VI) Reagent
N-(p-Toluenesulfonyl)-p-toluenesulfonimidamide 1
likely to be transformed into these hypervalent iodine(III)
reagents. Thus, while formerly, only iminoiodanes derived
from sulfonamides were available,5,12 carbamates7a,13 and
sulfamates7b,13b,14 can now be used as practical and syntheti-
cally useful precursors.
2) via the corresponding sulfonimidoyl chloride obtained by
action of anhydrous chloramine-T.19
Despite these improvements, the intermolecular copper-
catalyzed aziridination of olefins still suffers from low to
moderate yields when stoichiometric conditions are employed
in the case of simple aliphatic or electron-deficient alkenes.
Moreover, although a large number of ligands have been
described for asymmetric aziridination,15 their application
remains limited to styrene-type substrates.
It was therefore with the intention of enhancing the scope
of this process that we felt it interesting to apply our one-
pot methodology to generate chiral iminoiodanes in situ. As
has been previously noted,5 this strategy has not been
explored so far. To this end, we aimed to prepare a chiral
sulfur(VI) reagent since it was expected that the stereogenic
information could be transmitted to the targeted carbon atom
of the aziridine (Scheme 1).16
We therefore turned our attention to sulfonimidamides first
described by Levchenko17 more than 40 years ago but which
have received little attention so far, particularly those with
an unsubstituted amido nitrogen.18 Since initial experiments
with N-(alkyl)arylsulfonimidamides did not lead to satisfac-
tory results (less than 20% aziridination), we decided to use
the more robust N-(p-toluenesulfonyl)-p-toluenesulfonimi-
damide 1. The latter is easily prepared in three steps from
commercially available sodium p-toluenesulfinate (Scheme
The first investigations of the copper-catalyzed aziridina-
tion with 1 were performed on methyl acrylate. It has been
previously observed that this olefinic substrate displays poor
reactivity with sulfonamide-derived iminoiodanes under these
conditions,20 a frustrating result since the corresponding
aziridine-2-carboxylate is a useful precursor of R- or â-amino
acids.21 In contrast, we have now found that methyl acrylate
is an excellent aziridination substrate for 1. Thus, after
extensive screening of the reaction parameters, treatment of
5 equiv of methyl acrylate with 1 at -20 °C in acetonitrile
in the presence of 10 mol % Cu(MeCN)4PF6 led to compound
2a in 93% yield and 55% de. However, more interestingly,
the sulfonimidamide-derived iminoiodane appeared to be
highly reactive since the same procedure gave aziridine 2a
in 81% yield and 50% de using methyl acrylate as the
limiting component (Table 1, entry 1). Similar results were
obtained with other R,â-unsaturated esters. Reactions with
methyl methacrylate and tiglate are nearly quantitative (96
and 92%, respectively, entries 2 and 4) but occur with a
slightly lower de (41 and 38%, respectively), while the
highest diastereoselectivity has been obtained by using 5
equiv of the less reactive methyl crotonate (63% yield, 60%
de, entry 3).
Application of these conditions to simple aliphatic alkenes
of moderate reactivity6,22 also demonstrates the high reactivity
of sulfonimidamide 1 in the copper-catalyzed aziridination.
The monosubstituted terminal olefin 1-heptene was trans-
formed to aziridine 2e in 60% yield under stoichiometric
conditions (entry 5), while cyclic systems such as cyclohex-
(12) (a) Yamada, Y.; Yamamoto, T.; Okawara, M. Chem. Lett. 1975,
361-362. (b) So¨dergren, M. J.; Alonso, D. A.; Bedekar, A. V.; Andersson,
P. G. Tetrahedron Lett. 1997, 38, 6897-6900.
(13) (a) Levites-Agababa, E.; Menhaji, E.; Perlson, L. N.; Rojas, C. M.
Org. Lett. 2002, 4, 863-865. (b) Cui, Y.; He, C. Angew. Chem., Int. Ed.
2004, 43, 4210-4212. (c) Padwa, A.; Flick, A. C.; Leverett, C. A.; Stengel,
T. J. Org. Chem. 2004, 69, 6377-6386.
(14) (a) Duran, F.; Leman, L.; Ghini, A.; Burton, G.; Dauban, P.; Dodd,
R. H. Org. Lett. 2002, 4, 2481-2483. (b) Guthikonda, K.; Du Bois, J. J.
Am. Chem. Soc. 2002, 124, 13672-13673. (c) Wehn, P. M.; Lee, J.; Du
Bois, J. Org. Lett. 2003, 5, 4823-4826. (d) Fruit, C.; Mu¨ller, P.
Tetrahedron: Asymmetry 2004, 15, 1019-1026. (e) Fruit, C.; Mu¨ller, P.
HelV. Chim. Acta 2004, 87, 1607-1615. (f) Liang, J. L.; Yuan, S. X.; Huang,
J. S.; Che, C. M. J. Org. Chem. 2004, 69, 3610-3619.
(15) (a) Evans, D. A.; Faul, M. M.; Bilodeau, M. T.; Anderson, B. A.;
Barnes, D. M. (b) Li, Z.; Conser, K. R.; Jacobsen, E. N. J. Am. Chem. Soc.
1993, 115, 5326-5327. (c) Gillespie, K. M.; Sanders, C. J.; O’Shaughnessy,
P.; Westmoreland, I.; Thickitt, C. P.; Scott, P. J. Org. Chem. 2002, 67,
3450-3458.
(16) Initial experiments with chiral sulfinamides failed since these sulfur-
(IV) reagents did not survive the oxidizing conditions of the PhIdO-
mediated aziridination. See also: Leca, D.; Song, K.; Amatore, M.;
Fensterbank, L.; Lacoˆte, E.; Malacria, M. Chem. Eur. J. 2004, 10, 906-
916.
(17) Levchenko, E. S.; Derkach, N. Y.; Kirsanov, A. V. Zh. Obshch.
Khim. 1962, 32, 1208-1212.
(18) (a) Takei, H.; Watanabe, I.; Mukaiyama, T. Bull. Chem. Soc. Jpn.
1965, 38, 1989-1993. (b) Jones, M. R.; Cram, D. J. J. Am. Chem. Soc.
1974, 96, 2183-2190. (c) Johnson, C. R.; Jonsson, E. U.; Bacon, C. C. J.
Org. Chem. 1979, 44, 2055-2061. (d) Okuma, K.; Koike, T.; Ohta, H. J.
Org. Chem. 1988, 53, 4190-4193. (e) Tsushima, S.; Yamada, Y.; Onami,
T.; Oshima, K.; Chaney, M. O.; Jones, N. D.; Swartzendruber, J. K. Bull.
Chem. Soc. Jpn. 1989, 62, 1167-1178. (f) Toth, J. E.; Grindey, G. B.;
Ehlhardt, W. J.; Ray, J. E.; Boder, G. B.; Bewley, J. R.; Klingerman, K.
K.; Gates, S. B.; Rinzel, S. M.; Schultz, R. M.; Weir, L. C.; Worzalla, J. F.
J. Med. Chem. 1997, 40, 1018-1025. (g) Cathers, B. E.; Schloss, J. V.
Bioorg. Med. Chem. Lett. 1999, 9, 1527-1532.
(19) Levchenko, E. S.; Derkach, N. Y.; Kirsanov, A. V. Zh. Obshch.
Khim. 1960, 30, 1971-1975.
(20) Dauban, P.; Dodd, R. H. Tetrahedron Lett. 1998, 39, 5739-5742.
(21) (a) McCoull, W.; Davis, F. A. Synthesis 2000, 1347-1365. (b)
Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599-619.
(22) (a) Dauban, P.; Dodd, R. H. J. Org. Chem. 1999, 64, 5304-5307.
(b) Mairena, M. A.; D´ıaz-Requejo, M. M.; Belderra´ın, T. R.; Nicasio, M.
C.; Trofimenko, S.; Pe´rez, P. J. Organometallics 2004, 23, 253-256.
4504
Org. Lett., Vol. 6, No. 24, 2004