Bisphosphonates are an important class of biologically
active compounds, used, for example, in the treatment of
bone diseases such as osteoporosis7 or to prepare conjugates
with high bone affinity.8 Thus, the oxidative conversion of
1,1-bis-H-phosphinates into the corresponding bisphospho-
nates was investigated. H-Phosphinic acids have been
converted into phosphonates through a variety of methods.9
The acids are more reactive toward oxidation than the
corresponding neutral salts because the P(V)-P(III) tautom-
erism of the phosphinylidene group is catalyzed by non-
neutral conditions. However, we found ozonolysis to be a
practical method to directly convert the 1,1-bis-H-phos-
phinate disodium salt into the corresponding phosphonate
(eq 3). The same bisphosphonate was recently shown by
Szajnman and co-workers to have significant activity on
Trypanosoma cruzi farnesyl pyrophosphate synthase (Ki )
0.47 µM; IC50 ) 5.67 µM).10 Other reagents can also be
employed (H2O2, NaOCl, Br2), but ozonolysis was generally
found to be more convenient.11
Scheme 1. Preparation of a Steroid-Bisphosphonate
Conjugate
teoporosis and to decrease the well-known problems associ-
ated with hormone replacement therapy. Epiandrosterone was
reacted with propargyl chlorofomate to form the correspond-
ing carbonate 1 in nearly quantitative yield. Because of the
solubility profile of the steroid, a ternary solvent mixture
was employed for the radical reaction with NaH2PO2, which
then afforded 1,1-bis-H-phosphinate 2 as a white solid.
Finally, oxidation with ozone produced the bisphosphonate-
steroid conjugate 3. Thus, the present reaction can be used
for the expeditious synthesis of bisphosphonates. Literature
syntheses of steroid-bisphosphonate conjugates require time-
consuming multistep sequences, whereas our synthesis of 3
can be conducted quickly with a reasonable overall yield.13
The present reaction has obvious potential for the prepara-
tion of bisphosphonate libraries from terminal alkyne precur-
sors. Additionally, it avoids the cumbersome and sometimes
problematic8g,12a protection-deprotection strategies associ-
ated with the alkylation of methylenebisphosphonate esters.
Finally, the esterification of a 1,1-bis-H-phosphinate was
studied. It was found that a direct esterification of the sodium
salt with PivCl/i-PrOH delivered the corresponding ester as
a mixture of stereoisomers in good yield (eq 4).
The unique potential of 1,1-bis-H-phosphinates to function
as precursors of bisphosphonates was then realized with the
preparation of a steroid conjugate (Scheme 1). Bisphospho-
nate-steroid conjugates12 have been proposed as a method
to direct hormones to the bone for the treatment of os-
(7) (a) Rodan, G. A. Annu. ReV. Pharmacol. Toxicol. 1998, 38, 375. (b)
Mundy, G. R. Annu. ReV. Med. 2002, 53, 337. (c) Prestwood, K. M.;
Pilbeam, C. C.; Raisz, L. G. Annu. ReV. Med. 1995, 46, 249. (d) Fleisch,
H. Bisphosphonates in Bone Disease; Academic Press: San Diego, 2000.
(e) Bisphosphonate on Bones; Bijvoet, O. L. M., Fleisch, H. A., Canfield,
R. E., Russell, R. G. G., Eds.; Elsevier: Amsterdam, 1995.
(8) Bisphosphonate conjugates for bone targeting: (a) [methotrexate]
Sturtz, G.; Appe´re´, G.; Breistol, K.; Fodstad, O.; Schwartsmann, G.;
Hendriks, H. R. Eur. J. Med. Chem. 1992, 27, 825. (b) [doxorubicin] Fabulet,
O.; Sturtz, G. Phosphorus, Sulfur Silicon 1995, 101, 225. (c) [protein]
Uludag, H.; Gao, T.; Wohl, G. R.; Kantoci, D.; Zernicke, R. F. Biotechnol.
Prog. 2000, 16, 1115. (d) [protein] Uludag, H.; Kousinioris, N.; Gao, T.;
Kantoci, D. Biotechnol. Prog. 2000, 16, 258. (e) [fluoroquinolones]
Herczegh, P.; Buxton, T. B.; McPherson, J. C., III.; Kovacs-Kulyassa, A.;
Brewer, P. D.; Sztaricskai, F.; Stroebel, G. G.; Plowman, K. M.; Farcasiu,
D.; Hartmann, J. F. J. Med. Chem. 2002, 45, 2338. (f) [carboranes]
Kultyshev, R. G.; Liu, J.; Liu, S.; Tjarks, W.; Soloway, A. H.; Shore, S. G.
J. Am. Chem. Soc. 2002, 124, 2614. (g) [prostaglandin E2 conjugate] Gil,
L.; Han, Y.; Opas, E. E.; Rodan, G. A.; Ruel, R. J.; Seedor, J. G.; Tyler, P.
C.; Young, R. N. Bioorg. Med. Chem. 1999, 7, 901.
(9) Oxidation of H-phosphinates: [H2O2] (a) Barton, D. H. R.; Vonder
Embse, R. A. Tetrahedron 1998, 54, 12475. (b) Kehler, J.; Hansen, H. I.;
Sanchez, C. Bioorg. Med. Chem. Lett. 2000, 10, 2547. [Br2] (c) Baylis, E.
K.; Campbell, C. D.; Dingwall, J. G. J. Chem. Soc., Perkin. Trans 1 1984,
2845. (d) Fastrez, J.; Jespers, L.; Lison, D.; Renard, M.; Sonveaux, E.
Tetrahedron Lett. 1989, 30, 6861. (e) Hamilton, R.; Walker, B.; Walker,
B. J. Tetrahedron Lett. 1995, 36, 4451. (f) Drag, M.; Grembecka, J.;
Kafarski, P. Phosphorus, Sulfur Silicon 2002, 177, 1591. [NaIO4] (g)
Vitharana, D.; France, J. E.; Scarpetti, D.; Bonneville, G. W.; Majer, P.;
Tsukamoto, T. Tetrahedron: Asymmetry 2002, 13, 1609. [I2] (h) Albouy,
D.; Brun, A.; Munoz, A.; Etemad-Moghadam, G. J. Org. Chem. 1998, 63,
7223.
(10) Szajnman, S. H.; Montalvetti, A.; Wang, Y.; Docampo, R.;
Rodriguez, J. B. Bioorg. Med. Chem. Lett. 2003, 13, 3231.
(11) Depending on the substrate and oxidizer, variable amounts of
phosphate can also form through P-C bond cleavage. Details will be
provided in the full paper.
In conclusion, we have developed a simple and practical
approach to a new class of organophosphorus compounds.
(12) (a) Page, P. C. B.; McKenzie, M. J.; Gallagher, J. A. J. Org. Chem.
2001, 66, 3704. (b) Page, P. C. B.; Moore, J. P. G.; Mansfield, I.; McKenzie,
M. J.; Bowlerb, W. B.; Gallagher, J. A. Tetrahedron 2001, 57, 1837.
(13) A compound related to 3 with an ester tether in place of our
carbonate tether was prepared from Cl2P(O)CH2P(O)Cl2 in five steps and
61% overall yield. However, one of the steps requires a 5 day reaction
time. Circumventing this step results in a five-step sequence with a 26%
overall yield. See ref 12a.
Org. Lett., Vol. 7, No. 26, 2005
5911