D. D. DesMarteau, C. Lu / Tetrahedron Letters 47 (2006) 561–564
NH
563
O
CF3CH2
NH
O
O
d
H2N
e
4
+
O
1
O
OH
5
Scheme 2. Reagents and conditions: (d) HOBt, EDAC, DIPEA, CH2Cl2, 0 °C to rt, 6 h, 93%; (e) H2O, concd HCl to pH 0.5, reflux, 14 h, 83% for 1.
tions used with I > 2r(I); 2hmax = 54.94°; 238 para-
meters; non-H atoms refined anisotropically; H atoms
˚
fixed in calculated positions (C–H = 0.96 A); full-matrix
least-squares on F2 refinement; R = 3.88%/Rw(F2) =
10.14%. CCDC 233027.
Acknowledgments
Financial support of this research by the National
Science Foundation is gratefully acknowledged. Crystal-
lographic data were supplied by Dr. Don VanDerveer.
We thank Dr. R. V. Rajagopal for useful discussions.
Figure 1. Crystal structure of 1.
Supplementary data
The spectral data and crystallographic data of com-
Under the same conditions, the Fmoc-protected linear
pounds 6–9 are included in the supplementary data.
dipeptide Fmoc-Gly-Phe-OMe did not undergo the
Supplementary data associated with this article can be
cyclization reaction.
From these results it is clear that the trifluoroethylated
N-termini in linear dipeptides can still undergo amide
bond formation through intramolecular cyclization
reaction in acidic aqueous solutions. Future work will
References and notes
be focused on the effects of bases on the cyclization
reaction of N-terminal trifluoroethylated linear dipep-
tides, given the lowered pKa of the trifluoroethylated
N-termini.
1. Horton, D. A.; Bourne, G. T.; Smythe, M. L. J. Comput.
Aided Mol. Des. 2002, 16, 415–430.
2. Kohli, R. M.; Walsh, C. T.; Burkart, M. D. Nature 2002,
418, 658–661.
3. Prasad, C. Peptides 1995, 16, 151–164.
4. Witiak, D. T.; Wei, Y. Prog. Drug Res. 1990, 35, 249–363.
5. Anteunis, M. J. O. Bull. Soc. Chim. Belg. 1978, 87,
627–650.
6. Herbert, R. H.; Kelleher, F. Tetrahedron Lett. 1994, 35,
5497–5500.
Spectral data for 1: dH (500.16 MHz, CD3CN): 2.52
(1H, d, J = 17.7 Hz), 3.09 (2H, mc (centered multiplet)),
3.49 (1H, dd, J = 17.7, 4.1 Hz), 3.57 (1H, mc), 4.23
(0.5H, d, J = 4.1 Hz), 4.24 (0.5H, d, J = 4.5 Hz), 4.70
(1H, mc), 6.63 (1H, br s), 6.75 (2H, d, J = 8.5 Hz),
6.96 (2H, d, J = 8.5 Hz); dF (470.62 MHz, CD3CN):
À69.4 (3F, t, J = 9.2 Hz); dC (125.76 MHz, CD3CN):
35.7, 43.6, 44.0 (q, J = 33.6 Hz), 62.6, 115.4, 124.7 (q,
J = 280.4 Hz), 125.6, 131.3, 156.8, 166.1, 167.5; MS
(EI) m/z: formula C13H13N2O3F3, calcd 302.08, found
302.04.
7. Morley, J. E.; Levine, A. S.; Prasad, C. Brain Res. 1981,
210, 475–478.
8. Szardnings, A. K.; Burkoth, T. S.; Lu, H. H.; Tien, D. W.;
Campbell, D. A. Tetrahedron 1997, 53, 6573–6593.
9. Rhee, K. H. Int. J. Antimicrob. Agents 2004, 24, 423–427.
10. Cui, C.; Kakeya, H.; Osada, H. Tetrahedron 1996, 52,
12651–12666.
11. Funabashi, Y.; Horiguchi, T.; Iinuma, S.; Tanida, S.;
Harada, S. J. Antibiot. 1994, 47, 1202–1218.
12. Krchnak, V.; Weichsel, A. S.; Cabel, D.; Flegelova, Z.;
Lebl, M. Mol. Div. 1996, 1, 149–164.
13. Acharya, A. N.; Ostresh, J. M.; Houghten, R. A. J. Comb.
Chem. 2001, 3, 612–623.
14. Ienaga, K.; Nakamura, K.; Kurohashi, M.; Nakanishi, T.;
Ichii, T. Phytochemistry 1990, 29, 35–39.
15. Bopp, F. Liebigs Ann. Chem. 1849, 69, 16–37.
16. Curtius, T. Chem. Ber. 1883, 16, 753–757.
Crystallographic data for 1: Formula, C13H13N2O3F3;
monoclinic;
P21;
T = 293(2) K;
a = 7.6822(15),
b = 106.16(3)°;
; Z = 2; l =
˚
b = 10.906(2),
c = 8.7170(17) A,
V = 701.5(2) A ; Dcalc = 1.431 g cmÀ3
3
˚
0.128 mmÀ1; empirical absorption correction (0.9135–
0.9272); Mo-Ka radiation with graphite monochroma-
˚
tor, k = 0.71073 A; Rigaku AFC-8S diffractometer;
7203 measured reflections (Rint = 1.59%); 3068 reflec-