32
P.E. More et al. / Catalysis Communications 27 (2012) 30–32
Table 3
Appendix A. Supplementary data
Reuse of recovered catalyst (ZnO).
Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.catcom.2012.06.012.
No. of uses
Yield (%)
Recovery of ZnO (%)
1
2
3
97
93
90
95
92
90
References
[1] Y. Xia, Z.-Y. Yang, P. Xia, K.F. Bastow, Y. Nakanishi, K.-H. Lee, Bioorganic & Medicinal
Chemistry Letters 10 (2000) 699.
[2] H.-K. Hsieh, L.-T. Tsao, J.-P. Wang, Journal of Pharmacy and Pharmacology 52
(2000) 163.
[3] S. Ducki, R. Forrest, J.A. Hadfield, A. Kendall, N.J. Lawrence, A.T. McGown, D.
Rennison, Bioorganic & Medicinal Chemistry Letters 8 (1998) 1051.
[4] L.-M. Lin, Y. Zhou, M.T. Falvin, L.-M. Zhou, W. Nie, F.-C. Chen, Bioorganic & Medicinal
Chemistry 10 (2002) 2795.
[5] C. Furman, J. Lebeau, J.-C. Fruchart, J.-L. Bernier, P. Duriez, N. Cotelle, E. Teissier,
Journal of Biochemical and Molecular Toxicology 15 (2001) 270.
[6] E.J. Park, R. Park, J.S. Lee, J. Kim, Planta Medica 64 (1998) 464.
[7] J. Rojas, M. Paya, J.N. Dominguez, M. Luisa Ferrandiz, Bioorganic & Medicinal
Chemistry Letters 12 (2002) 1951.
compounds such as pyridine and thiophene (Table 2, entries j–k) produc-
ing the corresponding 3-acylated and 2-acylated chalcones respectively in
excellent yields, which are otherwise problematic with AlCl3 [9,23,24]. It
is interesting to note that the reaction conditions are mild enough not
to induce dealkylation of an ether residue ortho to the introduced acyl
group (Table 2, entries c and e) as observed in the acylation reaction
with carboxylic acid catalyzed by BF3 [25]. And the yield of
O-acylated chalcone in a short time (Table 2, entry q) is higher than
the reaction catalyzed by BF3-etherate [26].
In order to study, catalytic activity of recovered catalyst (ZnO), it was
reused for the reaction of trimethoxybenzene with cinnamoyl chloride
(Table 2, entry e). The results summarized in Table 3 indicated that re-
covered catalyst (ZnO) can be used at least three times without any ap-
preciable loss in activity. The recovery of the catalyst (ZnO) was more
than 90% by simple filtration and washing with dichloromethane. Fur-
thermore, the selectivity of the catalyst (ZnO) was examined.
The utility of this protocol to synthesize important intermediates
for drug molecules like flavopiridol and rohitukine is in progress in
our laboratory.
[8] M. Satyanarayana, P. Tiwari, B.K. Tripathi, A.K. Shrivastav, R. Pratap, Bioorganic &
Medicinal Chemistry 12 (2004) 883.
[9] N.O. Calloway, L.D. Green, Journal of the American Chemical Society (1937) 809.
[10] K. Johnston, M. Jones, F. John, Journal of the Chemical Society C: Organic (1969)
814.
[11] S. Sebti, A. Solhy, R. Tahir, S. Boulaajaj, A.J. Mayoral, J.M. Friale, A. Kossir, H.
Oumimoun, Tetrahedron Letters 42 (2001) 7953.
[12] S. Sebti, A. Solhy, A. Smahi, A. Kossir, H. Oumimoun, Catalysis Communications 3
(2002) 335.
[13] R. Ballani, G. Bosica, R. Maggi, M. Ricciutlli, P. Righi, G. Sartori, R. Sartorio, Green
Chemistry 3 (2001) 178.
[14] S. Saravanamurugan, M. Palanichamy, Banumathi Arabindoo, V. Murugesan, Catalysis
Communications 6 (2005) 395.
[15] E. LeGal, F. Texier-Bullet, J. Hamelin, Synthetic Communications 29 (1999) 3651.
[16] M. Al-Masum, E. Ng, M.C. Wai, Tetrahedron Letters 52 (2011) 1008.
[17] S. Hashem, M. Hosseini Sarvari, Synthesis 8 (2002) 1057.
[18] M. Hosseini Sarvari, H. Sharghi, Journal of Organic Chemistry 71 (2006) 6652.
[19] M. Hosseini Sarvari, Synthesis 5 (2005) 787.
[20] M. Gupta, S. Paul, R. Gupta, A. Loupy, Tetrahedron Letters 46 (2005) 957.
[21] B.P. Bandgar, P.E. More, V.T. Kamble, S.S. Sawant, Australian Journal of Chemistry
61 (2008) 1006.
[22] M.T. Maghsoodlou, A. Hassankhani, H.R. Shaterian, S.M. Habibi-Khorasam, E.
Mosaddegh, Tetrahedron Letters 48 (2007) 1729.
[23] K.M. Johnston, F. John, Journal of the Chemical Society C: Organic (1969) 814.
[24] Y. Han, L. Fang, W.-T. Tao, Y.-Z. Huang, Tetrahedron Letters 36 (1995) 1287.
[25] G.P. Schiemenz, U. Schmidt, Liebigs Annalen der Chemie (1976) 1514.
[26] T. Nareder, K. Papi Reddy, Tetrahedron Letters 48 (2007) 3177.
4. Conclusion
In conclusion, we have developed a simple, clean and efficient pro-
cedure for the synthesis of chalcones using commerciality available in-
expensive and non-toxic zinc oxide powder as a new catalyst. Without
any activation, ZnO is directly used as a catalyst and not a supporting
metal oxide. The effectiveness of this protocol is manifested in its
regioselectivity and recyclability of the catalyst.
Acknowledgment
P. E. More is thankful to BCUD University of Pune for sanctioning
Research Project Proposal No.11SCI001203.