10.1002/chem.201702710
Chemistry - A European Journal
COMMUNICATION
A) O-nucleophile addition to thioalkyne
[Au]+
SMe
Ph
Ph
Chem. Int. Ed. 2012, 51, 6209; e) T. J. Montavon, Y. E. Turkmen, N. A.
Shamsi, C. Miller, C. S. Sumaria, V. H. Rawal, S. A. Kozmin, Angew.
Chem. Int. Ed. 2013, 52, 13576; f) H. Qian, W. X. Zhao, J. W. Sun,
Chem. Record 2014, 14, 1070; g) X. N. Wang, H. S. Yeom, L. C. Fang,
S. H. He, Z. X. Ma, B. L. Kedrowski, R. P. Hsung, Acc. Chem. Res.
2014, 47, 560; h) G. Evano, N. Blanchard, G. Compain, A. Coste, C. S.
Demmer, W. Gati, C. Guissart, J. Heimburger, N. Henry, K. Jouvin, G.
Karthikeyan, A. Laouiti, M. Lecomte, A. Martin-Mingot, B. Metayer, B.
Michelet, A. Nitelet, C. Theunissen, S. Thibaudeau, J. J. Wang, M.
Zarca, C. Y. Zhang, Chem. Lett. 2016, 45, 574.
O
•
Ph
HO
9a
JohnPhosAu(TA)OTf
DCE, 60 oC, 16 h
O
+
MeS
Ph
Ph
MeS
Ph
1b
10a, 60%
B) Competition study between terminal alkyne and thioalkyne
Ph
H
Ph
O
•
SMe
Ph
OH
1.0 eq
O
•
same condition
Ph
Ph
+
Ph
or
9a, 1.0 eq.
MeS
[7]
a) A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed. 2006, 45,
7896; b) R. A. Widenhoefer, X. Q. Han, Eur. J. Org. Chem. 2006, 4555;
c) A. Furstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410; d)
D. J. Gorin, F. D. Toste, Nature 2007, 446, 395; e) A. Arcadi, Chem.
Rev. 2008, 108, 3266; f) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem.
Rev. 2008, 108, 3351; g) A. Furstner, Chem. Soc. Rev. 2009, 38, 3208;
h) P. Garcia, M. Malacria, C. Aubert, V. Gandon, L. Fensterbank,
Chemcatchem 2010, 2, 493; i) A. S. K. Hashmi, Angew. Chem. Int. Ed.
2010, 49, 5232; j) S. Sengupta, X. D. Shi, Chemcatchem 2010, 2, 609;
k) S. P. Nolan, Acc. Chem. Res. 2011, 44, 91; l) J. Xiao, X. W. Li,
Angew. Chem. Int. Ed. 2011, 50, 7226; m) L. P. Liu, G. B. Hammond,
Chem. Soc. Rev. 2012, 41, 3129; n)C. Obradors, A. M. Echavarren,
Acc. Chem. Res. 2014, 47, 902; o) Y. M. Wang, A. D. Lackner, F. D.
Toste, Acc. Chem. Res. 2014, 47, 889.
O
Ph
1b, 1.0 eq
Ph
ref 20
not detected
10a, 36%
Ph
Scheme 3. Propargyl alcohol addition to thioalkyne
In summary, for the first time we successfully disclosed the
possibility of gold-catalyzed intermolecular functionalization of
thioalkynes. With the proper choice of gold catalysts, different
nucleophiles could be used to afford trisubstituted alkenyl
sulfides, ketene dithioacetal and allenyl thioesters efficiently.
These newly synthesized products are a range of highly
functionalized sulfur-containing compounds whose previous
syntheses are not straightforward. Sulfur is both advantageous
[8]
For reviews, see a) S. Couty, C. Meyer, J. Cossy, Tetrahedron 2009,
65, 1809. b) F. Pan, C. Shu, L. W. Ye, Org. Biomol. Chem. 2016, 14,
9456. For selected examples, see: a) S. Couty, C. Meyer, J. Cossy,
Angew. Chem. Int. Ed. 2006, 45, 6726. b) R. B. Dateer, K. Pati, R. S.
Liu, Chem. Commun. 2012, 48, 7200. c) C. Shu, Y. H. Wang, B. Zhou,
X. L. Li, Y. F. Ping, X. Lu, L. W. Ye, J. Am. Chem. Soc. 2015, 137,
9567. d) A. H. Zhou, Q. He, C. Shu, Y. F. Yu, S. Liu, T. Zhao, W.
Zhang, X. Lu, L. W. Ye, Chem. Sci. 2015, 6, 1265. e) L. Zhu, Y. H. Yu,
Z. F. Mao, X. L. Huang, Org. Lett. 2015, 17, 30.
and
deleterious
in
homogeneous
gold-catalyzed
functionalization of thioalkynes. Although the sulfur-containing
substrate can poison the gold catalyst by forming stable
deactivated complexes, it enhances the reactivity of the triple
bond and promotes formation of sulfonium intermediate A. Thus,
this reported transformations represent novel methodologies to
functionalize thioalkynes, and serve as the foundation for the
development of other gold-catalyzed reactions involving sulfur.
[9]
a) L. Song, S. Ding, Y. Wang, X. Zhang, Y. Wu, J. Sun, J. Org. Chem.
2016, 81, 6157-6164. b) D. Ding, L. Song, Y. Wang, X. Zhang, C. Wa,
Y. Wu, J. Sun, Angew. Chem. Int. Ed. 2015, 54, 5632-5635. c) S. Ding,
G. Jia, J. Sun, Angew.Chem. Int. Ed. 2014, 53,1877 –1880;
Acknowledgements
[10] a) S. E. Brown-Xu, M. H. Chisholm, C. B. Durr, T. F. Spilker, J. Am.
Chem. Soc. 2013, 22, 8254-8259. b) X.C. Cambeiro, T. C. Boorman, P.
Lu, I. Larrosa, , Angew. Chem. Int. Ed. 2013, 52, 1781-1784.
[11] For examples of gold-catalyzed hydroarylation of alkyne, see: a) M. T.
Reetz, K. Sommer, Eur. J. Org. Chem. 2003, 3485; b) S. Samala, A. K.
Mandadapu, M. Saifuddin, B. Kundu, J. Org. Chem. 2013, 78; c) V.
Pirovano, M. Negrato, G. Abbiati, M. Dell'Acqua, E. Rossi, Org. Lett.
2016, 18; d) J. Schiessl, M. Rudolph, A. S. K. Hashmi, Adv. Synth.
Catal. 2017, 359, 639.
We are grateful to the NSF (CHE-1619590), NIH
(1R01GM120240-01) and NSFC (21629201) for financial
support.
Keywords: gold· thioalkyne· thio-ketene · ketene dithioacetal
[12] The good E/Z selectivity might also be attributed to the isomerization of
the initially formed Z-1,1-thio-aryl alkenes. See Examples: a) A.
Zhdanko, M. E. Maier, Chem. Eur. J. 2014, 20, 1918; b) A. Zhdanko, M.
E. Maier, Angew. Chem. Int. Ed. 2014, 53, 7760.
[1]
[2]
[3]
M. E. Peach, Chem. Thio. Group 1974, 721-784.
K. C. Majumdar, P. Debnath, Tetrahedron 2008, 64, 9799-9820.
J. Sturala, S. Bohacova, J. Chudoba, R. Metelcova, R. Cibulka, J. Org.
Chem. 2015, 80, 2676-2699.
[13] T. Ping et al. Chin. J. Chem. 2011, 29, 765-768.
[14] I. Nakamura, T. Sato, M. Terada, Y. Yamamoto, Org. Lett. 2008, 10,
2649.
[4]
a) G. Y. Li, Angew. Chem. Int. Ed. 2001, 40, 1513; b) I. P. Beletskaya,
V. P. Ananikov, Chem. Rev. 2011, 111, 1596; c) C. C. Eichman, J. P.
Stambuli, Molecules 2011, 16, 590; d) S. G. Modha, V. P. Mehta, E. V.
Van der Eycken, Chem. Soc. Rev. 2013, 42, 5042; e) A. N. Desnoyer, J.
A. Love, Chem. Soc. Rev. 2017, 46, 197; f) Y. J. Liu, S. S. Liu, Y. Xiao,
Beilstein J. Org. Chem. 2017, 13, 589.
[15] T. Saitoh, N. Jimbo, J. Ichikawa, Chem. Lett. 2004, 33, 1032-1033.
[16] a) D. C. Harrowven, R. Browne, Tetrahedron Lett. 1994, 35, 5301-53-2.
b) H. Ishibashi, C. Kameoka, H. Iriyama, K. Kodama, T. Sato, M. Ikeda,
J. Org. Chem. 1995, 60, 1276-1284.
[17] A. B. Smith, C. M. Adams, Acc. Chem. Res. 2004, 37, 365-377.
[18] a) T. Cohen, R. E. Gapinski, R. R. Hutchins, J. Org. Chem. 1979, 44,
3599-3601. b) H. J. Cristau, B. Chabaud, R. Labaudiniere, H. Christol J.
Org. Chem. 1986, 51, 875-878. c) V. K. Aggarval, R. M. Steele,
Ritmaleni, J. K. Barrell, I. Grayson, J. Org. Chem. 2003, 68, 4087-4090.
d) A. Manvar, D. F. O’Shea, Eur. J. Org. Chem. 2015, 7259-7263.
[5]
[6]
a) N. E. Schore, Chem. Rev. 1988, 88, 1081-1119, b) R. Dorel, A. M.
Echavarren, Chem. Rev. 2015,115, 9028-9072.
For selected examples, see: a) K. A. DeKorver, H. Y. Li, A. G. Lohse, R.
Hayashi, Z. J. Lu, Y. Zhang, R. P. Hsung, Chem. Rev. 2010, 110, 5064;
b) G. Evano, A. Coste, K. Jouvin, Angew. Chem. Int. Ed. 2010, 49,
2840; c) X. Zhang, B. Q. Liu, X. Shu, Y. Gao, H. P. Lv, J. Zhu, J. Org.
Chem. 2012, 77, 501; d) W. X. Zhao, Z. B. Wang, J. W. Sun, Angew.
This article is protected by copyright. All rights reserved.