C O M M U N I C A T I O N S
Table 1. Synthesis of Multisubstituted Allylic Amines 9 through
Scheme 2. Synthesis of Roliprama
Catalytic Four-Component Assemblya
run
2b
Ar1
Ar2
9 (yield, %)c
1
2b
2b
2b
2b
2b
2c
2c
2c
2d
2d
2d
2d
C6H5 (a)
4-MeC6H4 (c)
3-thienyl (e)
4-CF3C6H4 (f)
1-naphthyl (g)
4-MeC6H4 (c)
4-MeOC6H4 (d)
4-EtOCOC6H4 (i)
4-MeC6H4 (c)
C6H5 (a)
4-MeCOC6H4 (b)
4-MeOC6H4 (d)
4-MeC6H4 (c)
C6H5 (a)
3-MeOC6H4 (h)
C6H5 (a)
3-thienyl (e)
2-MeC6H4 (j)
4-MeOC6H4 (d)
3-pyridyl (k)
4-EtOCOC6H4 (i)
4-ClC6H4 (m)
9bab (73)
9bcd (74)
9bec (90)
9bfa (80)
9bgh (59)
9cca (66)
9cde (69)
9cij (66)
9dcd (52)
9dak (67)
9dei (82)
9dlm (74)
2
3
4
5
6
a Conditions: (a) Pd2(dba)3, P(2-furyl)3, i-Pr2NEt, toluene, 80 °C; (b)
Pd(OAc)2, PPh3, p-benzoquinone, CO (1 atm), MeOH, 50 °C; (c) Pd/C, H2
(60 atm), EtOH, 60 °C; (d) Li, liq. NH3, -40 °C.
7
8
9
10
11
12
3-thienyl (e)
4-NCC6H4 (l)
allylic amines are ubiquitous structural constituents in pharmaco-
logically important molecules with many interesting actions,5 the
present diversity-oriented synthesis should find many uses in the
development of new biofunctional small molecules. Investigations
along this line as well as the elucidation of reaction mechanism
are currently ongoing.
a Reaction conditions: (i) 1 (0.36 mmol), 2 (0.36 mmol), Ar1-I (3: 0.30
mmol), Pd2(dba)3 (0.0075 mmol), P(2-furyl)3 (0.03 mmol), i-Pr2NEt (0.90
mmol), toluene (1.5 mL), 80 °C; (ii) Ar2-X (8: 0.45 mmol), Cs2CO3 (1.5
mmol), H2O (1.2 mmol), toluene (0.5 mL), 90 °C (one-pot). b Morpholine
(2b), pyrrolidine (2c), N-benzylmethylamine (2d). c Isolated yields.
Scheme 1. Synthesis of Various Allylic Amines through C-B
Functionalization of 4a
Acknowledgment. This work was financially supported in part
by a Grant-in-Aid for Scientific Research from the Japan Society
for the Promotion of Science (JSPS). K.T. is a recipient of the JSPS
Predoctoral Fellowships for Young Scientists.
Supporting Information Available: Experimental procedures and
characterization data for all new compounds. This material is available
References
(1) (a) Zhu, J., Bienayme´, H., Eds. Multicomponent Reactions; Wiley-VCH:
Weinheim, 2005. (b) Ramo´n, D. J.; Yus, M. Angew. Chem., Int. Ed. 2005,
44, 1602. (c) Do¨mling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168.
(d) Schreiber, S. L. Science 2000, 287, 1964.
a Conditions: (a) see eq 1 (Ar ) p-tolyl); (b) Pd(OAc)2, PPh3, Cs2CO3,
H2O, toluene, 90 °C, under air; (c) ethyl cis-3-iodoacrylate, Cs2CO3, H2O,
90 °C; (d) Pd(OAc)2, PPh3, p-benzoquinone, CO (1 atm), MeOH, 50 °C.
Amines: morpholine (2b) for 10-12, benzylamine (2a) for 13.
(2) Itami, K.; Yoshida, J. Chem. Eur. J. 2006. In press.
(3) (a) Itami, K.; Tonogaki, K.; Ohashi, Y.; Yoshida, J. Org. Lett. 2004, 6,
4093. For other organo-element platforms, see: (b) Itami, K.; Mineno,
M.; Muraoka, N.; Yoshida, J. J. Am. Chem. Soc. 2004, 126, 11778. (c)
Itami, K.; Ohashi, Y.; Yoshida, J. J. Org. Chem. 2005, 70, 2778.
(4) Selected examples: (a) Micalizio, G. C.; Schreiber, S. L. Angew. Chem.,
Int. Ed. 2002, 41, 152. (b) Goldberg, S. D.; Grubbs, R. H. Angew. Chem.,
Int. Ed. 2002, 41, 807. (c) Yamamoto, Y.; Ishii, J.; Nishiyama, H.; Itoh,
K. J. Am. Chem. Soc. 2004, 126, 3712. (d) Nakamura, M.; Hatakeyama,
T.; Hara, K.; Fukudome, H.; Nakamura, E. J. Am. Chem. Soc. 2004, 126,
14344.
(5) Selected examples: (a) Gupta, A. K.; Shear, N. H. J. Am. Acad. Dermatol.
1997, 37, 979. (b) Holmes, B.; Brogden, R. N.; Heel, R. C.; Speight, T.
M.; Avery, G. S. Drugs 1984, 27, 6. (c) Slater, J. W.; Zechnich, A. D.;
Haxby, D. G. Drugs 1999, 57, 31.
efficiently as shown in eq 1, the remaining N-H functionality seems
to interfere with the last C-B arylation step.
In addition to the rapid synthesis of 2,3-diarylated allylic amines
9 through post C-B arylation, other transformations of boryl groups
of three-component products 4 are feasible. As demonstrated in
Scheme 1, Pd-catalyzed homocoupling,9 Suzuki-Miyaura coupling
using alkenyl halide,8 esterification,10 and carbonylative cyclization10
are possible to afford various potentially useful allylic amines 10-
13 in good yields.
Finally, we applied our four-component assembly strategy to a
short synthesis of rolipram, which is a selective inhibitor of
phosphodiesterase-4 (PDE-4), an antiinflammatory agent and
antidepressant (Scheme 2).11 Thus, catalytic three-component
assembly of 1, benzylamine (2a), and aryl iodide 3n, followed by
carbonylative cyclization afforded unsaturated lactam 14 in 59%
yield (two steps). Hydrogenation of CdC bond and deprotection
of N-benzyl group with Li/NH3 gave rolipram in 81% yield.
In summary, we have developed a novel catalytic four-component
assembly based on an allenylboronate platform, by which a range
of functionalized allylic amine structures can be constructed in a
regioselective, stereoselective, and diversity-oriented manner. Since
(6) Pd-catalyzed reactions of allenes, aryl halides, and amines: (a) Shimizu,
I.; Tsuji, J. Chem. Lett. 1984, 233. (b) van Laren, M. W.; Diederen, J. J.
H.; Elsevier, C. J. AdV. Synth. Catal. 2001, 343, 255. (c) Dondas, H. A.;
Balme, G.; Clique, B.; Grigg, R.; Hodgeson, A.; Morris, J.; Sridharan, V.
Tetrahedron Lett. 2001, 42, 8673.
(7) Selected recent examples of catalytic multicomponent assembly using
allenes: (a) Ng, S.-S.; Jamison, T. F. J. Am. Chem. Soc. 2005, 127, 7320.
(b) Hopkins, C. D.; Malinakova, H. C. Org. Lett. 2004, 6, 2221. (c) Yang,
F.-Y.; Shanmugasundaram, M.; Chuang, S.-Y.; Ku, P.-J.; Wu, M.-Y.;
Cheng, C.-H. J. Am. Chem. Soc. 2003, 125, 12576. For reviews, see: (d)
Ma, S. Chem. ReV. 2005, 105, 2829. (e) Zimmer, R.; Dinesh, C. U.;
Nandanan, E.; Khan, F. A. Chem. ReV. 2000, 100, 3067.
(8) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457.
(9) Wong, M. S.; Zhang, X. L. Tetrahedron Lett. 2001, 42, 4087.
(10) Yamamoto, Y.; Ishii, J.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2005,
127, 9625 and references therein.
(11) Garcia, A. L. L.; Carpes, M. J. S.; de Oca, A. C. B. M.; dos Santos, M.
A. G.; Santana, C. C.; Correia, C. R. D. J. Org. Chem. 2005, 70, 1050
and references therein.
JA057778A
9
J. AM. CHEM. SOC. VOL. 128, NO. 5, 2006 1465