1248
S. W. Shuey et al. / Bioorg. Med. Chem. Lett. 16 (2006) 1245–1248
Table 2. Composition of the b-peptoid test compounds and their mic
values against E. coli
3. Zasloff, M. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 5449.
4. White, S. H.; Wimley, W. C.; Selsted, M. E. Curr. Opin.
Struct. Biol. 1995, 5, 521.
5. (a) DeGrado, W. F.; Kezdy, F. J.; Kaiser, E. T. J. Am.
Chem. Soc. 1981, 103, 679; (b) Haynie, S. L.; Crum, G. A.;
Doele, B. A. Antimicrob. Agents Chemother. 1995, 39, 301;
(c) DeGrado, W.F.; Pept.: Struct. Funct., Proc. Am. Pept.
Symp., 8th, Hruby, V. J., Ed. (1983); (d) Blondelle, S. E.;
Houghten, R. A. Biochemistry 1992, 31, 12688; (e) Minor,
D. L., Jr.; Kim, P. S. Nature 1994, 367, 660.
6. Bechinger, B.; Zasloff, M.; Opella, S. J. Protein Sci. 1993,
2, 2077.
7. Shai, Y. Biochim. Biophys. Acta 1999, 1462, 55.
8. Porter, E. A.; Weisblum, B.; Gellman, S. H. J. Am. Chem.
Soc. 2002, 124, 7324.
9. (a) Patch, J. A.; Barron, A. E. J. Am. Chem. Soc. 2003,
125, 12092; (b) Ng, S.; Goodson, B.; Ehrhardt, A.; Moos,
W. H.; Siani, M.; Winter, J. Bioorg. Med. Chem. 1999, 7,
1781.
10. (a) Mandeville, W. H.; Neenan, T. X.; Holmes-Farley, S.
R. U.S. Patent 6,034,129, 2000; (b) Tew, G. N.; Liu, D.;
Chen, B.; Doerksen, R. J.; Kaplan, J.; Carroll, P. J.; Klein,
M. L.; DeGrado, W. F. Proc. Natl. Acad. Sci. U.S.A.
2002, 99, 5110; (c) Kuroda, K.; DeGrado, W. F. J. Am.
Chem. Soc. 2005, 127, 4128.
Compound
Peptoid
block (6)
Number of repeat
(n)
MIC
(lg/mL)
15a
15b
15c
15d
15e
15f
15g
15h
15i
6a
6a
6a
6b
6b
6b
6c
6c
6c
6f
6f
6f
6g
6g
6g
6h
6i
3
5
6
3
4
5
5
7
8
3
4
5
5
7
8
2
1
2
3
2
3
128
128
128
512
128
128
>512
>512
>512
>512
256
15j
15k
15l
256
256
15m
15n
15o
15p
15q
15r
15s
15t
15u
128
256
>512
>512
>512
>512
>512
512
6i
6i
6j
6j
11. Hamper, B. C.; Kolodziej, S. A.; Scates, A. M.; Smith, R.
G.; Cortez, E. J. Org. Chem. 1998, 63, 708.
12. Lee, S.; Mihara, H.; Aoyagi, H.; Kato, T.; Izumiya, N.;
Yamasaki, N. Biochim. Biophys. Acta 1986, 862, 211.
13. (a) Anzai, K.; Hamasuna, M.; Kadono, H.; Lee, S.;
Aoyagi, H.; Kirino, Y. Biochim. Biophys. Acta 1991, 1064,
256; (b) Houghten, R. A.; Pinilla, C.; Blondelle, S. E.;
Appel, J. R.; Dooley, C. T.; Cuervo, J. H. Nature 1991,
354, 84(c) Houghten, R. A.; Blondelle, S. Int. Pat. App.
1992, W.O. 92/0146.
of 16 lg/mL in this assay). This initial library demon-
strates that b-peptoids can be prepared with antimicro-
bial activity. More compounds are needed to draw
conclusions as to the minimal length necessary for
activity, the ideal hydrophobic/cationic content, and
preferred side-chain composition.
14. Rink-Fmoc-Lys(BOC)-OH resin (0.042 mmol) was treated
with 3.0 mL of 25% piperidine/THF for 1.0 h. The resin
was then drained, washed, and dried under N2 pressure.
Added 6a–j (0.126 mmol) as a 0.5 mg/lL stock in NMP
and DIEA (0.168 mmol) to the resin. Prepared HATU
(0.210 mmol) in 1.0 mL NMP, added to the resin, and
agitated at 25 ꢁC for 20 h under N2.
15. The minimal inhibitory concentration (MIC) was deter-
mined in sterile microtiter plates in a final volume of
200 lL using trypticase soy broth (TSB) as the growth
medium. Serial 2-fold dilutions of the b-peptoid stock
solutions were made in the plate wells such that concen-
trations ranged from 1024 to 2 lg/mL in a volume of
100 lL. Each well was then inoculated with 100 lL of a
dilute solution of bacteria (E. coli ATCC 25922) in TSB
yielding a final concentration of 1 · 10À4 bacteria/mL. The
final b-peptoid concentrations ranged from 512 to 1 lg/
mL. The assay plates were incubated at 37 ꢁC for 24 h in a
bioscreen C microtiter plate reader. The optical density of
the medium at 600 nm was recorded every 20 min to
monitor cell growth. The lowest concentration of b-
peptoid preventing bacterial growth at 24 h was defined as
the MIC.
A method for preparing oligo-b-peptoids was developed
by using a block approach. The method is far more
efficient than synthesis by sequential sub-monomer
approach which failed in our hands after about the
pentamer stage. The method was successfully used to
prepare oligomers up to 18 mers which were tested in an
antimicrobial assay. This route opens the way for a more
detailed look at this class of peptide-mimetic oligomers.
More work is needed to fully elucidate the importance
of length, hydrophobic content, and side-chain composi-
tion on the SAR. In addition, elucidation of secondary
structure for these materials compared to that of peptides,
b-peptides and a-peptoids is now possible.
References and notes
1. For a review of the mechanism of antimicrobial peptides
see: Shai, Y. Biochim. Biophys. Acta 1999, 1462, 55.
2. Steiner, H.; Hultmark, D.; Engstrom, A.; Bennich, H.;
Boman, H. G. Nature 1981, 292, 246.