tool for the construction of otherwise quite inaccessible
substituted heterocycles.10,11 However, to our knowledge, the
use of quinolines as substrates in intramolecular processes
has been limited to the reaction with aryl radicals under
reductive (tributyltin hydride) conditions.12 In fact, most
reported examples deal with intermolecular reactions con-
ducted in acidic media under oxidative protocols.13
Scheme 1. Preparation of the Radical Precursors
In the past few years, we have been studying the generation
of 2-indolylacyl radicals from the corresponding phenyl
selenoesters and their reaction with alkenes under reductive
conditions.14 Cyclization upon aromatic rings was also
possible,15 but under nonreductive (hexabutylditin/hν) condi-
tions, producing benzocarbazolediones16 and ellipticine quino-
nes17 in moderate yields. Based on these results, we expected
that the related quinoline-containing radicals would partici-
pate in similar cyclizations, ultimately leading to the carba-
zoledione moiety characteristic of calothrixin B.
Our investigation began with the preparation of selenoester
8, a model radical precursor bearing the required (3-
quinolyl)methyl moiety connected to the indole 3-position.18
This compound was easily accessible from N-methylindole
1 as depicted in Scheme 1. Chemoselective reaction with
3-lithio-2-bromoquinoline, followed by triethylsilane reduc-
tion of the resulting carbinol provided 2-bromoquinoline 3,
which was converted into methyl ester 5 upon reduction.
Subsequent hydrolysis of 5, followed by phenylselenation
of the respective carboxylic acid gave the target compound
8.
(7) Sissouma, D.; Collet, S. C.; Guingant, A. Y. Synlett 2004, 2612-
2614.
(8) Tohyama, S.; Choschi, T.; Matsumoto, K.; Yamabuki, A.; Ikegata,
K.; Nobuhiro, J.; Hibino, S. Tetrahedron Lett. 2005, 46, 5263-5264.
(9) For reviews on acyl radicals, see: (a) Ryu, I.; Sonoda, N.; Curran
D. P. Chem. ReV. 1996, 96, 177-194. (b) Chatgilialoglu, C.; Crich, D.;
Komatsu, M.; Ryu, I. Chem. ReV. 1999, 99, 1991-2069.
(10) For reviews, see: (a) Studer, A.; Bossart, M. In Radicals in Organic
Synthesis; Renaud, P.; Sibi, M. P., Eds; Wiley-VCH: Weinheim, 2001;
Vol. 2, pp 62-80. (b) Bowman, W. R.; Fletcher, A. J.; Potts, G. B. S. J.
Chem. Soc., Perkin Trans. 1 2002, 2747-2762.
(11) For more recent representative leading references, see: (a) Menes-
Arzate, M.; Mart´ınez, R.; Cruz-Almanza, R.; Muchowski, J. M.; Osornio,
Y. M.; Miranda, L. D. J. Org. Chem. 2004, 69, 4001-4004. (b) Bacque´,
E.; El Qacemi, M.; Zard, S. Z. Org. Lett. 2004, 6, 3671-3674. (c) Nu´n˜ez,
A.; Sa´nchez, A.; Burgos, C.; Alvarez-Builla, J. Tetrahedron 2004, 60, 6217-
6224. (d) Ohno, H.; Iwasaki, H.; Eguchi, T.; Tanaka, T. Chem. Commun.
2004, 2228-2229. (e) Allin, S. M.; Bowman, W. R.; Elsegood, M. R. J.;
McKee, V.; Karim, R.; Rahman, S. S. Tetrahedron 2005, 61, 2689-2696.
(f) Murphy, J. A.; Tripoli, R.; Khan, T. A.; Mali, U. W. Org. Lett. 2005, 7,
3287-3289. (g) Crich, D.; Patel, M. Org. Lett. 2005, 7, 3625-3628. (h)
Taniguchi, T.; Iwasaki, K.; Uchiyama, M.; Tamura, O.; Ishibashi, H. Org.
Lett. 2005, 7, 4389-4390.
(12) (a) Harrowven, D. C.; Sutton, B. J.; Coulton, S. Tetrahedron Lett.
2001, 42, 2907-2910. (b) Harrowven, D. C.; Sutton, B. J.; Coulton, S.
Tetrahedron 2002, 58, 3387-3400. For a review, see: (c) Harrowven, D.
C.; Sutton, B. J. In Progress in Heterocyclic Chemistry; Gribble, G. W.,
Joule, J. A., Eds.; Elsevier: Amsterdam, 2004; Vol. 16, pp 27-53.
(13) (a) Minisci, F.; Vismara, E.; Fontana, F. Heterocycles 1989, 28,
489-519. (b) Minisci, F.; Fontana, F.; Pianese, G.; Yan, Y. M. J. Org.
Chem. 1993, 58, 4207-4211. (c) Minisci, F.; Recupero, F.; Ceccheto, A.;
Punta, C.; Gambarotti, C.; Fontana, F.; Pedulli, G. F. J. Heterocycl. Chem.
2003, 40, 325-328.
N-Methylselenoester 8 was first allowed to react under
conditions similar to those reported in our earlier work, i.e.,
with n-Bu6Sn2 under 300 W sun lamp irradiation. However,
after irradiation and heating at 80 °C for 24 h, we obtained
a complex reaction mixture of unidentified products, the
expected quinone only being detected in trace amounts. As
this disappointing result might be related with an increased
reactivity of the quinoline with respect to the pyridine or
phenyl rings, we turned to reductive conditions, hoping that
the cyclization would now be fast enough to avoid the
premature reduction of the initially formed acyl radical. We
were pleased to find that treatment of selenoester 8 with tris-
(trimethylsilyl)silane19 (TTMSS) and azobisisobutyronitrile
(AIBN, 2.5 molar equiv) at 80 °C for 8 h led to the
calothrixin-related pentacycle 10 in 65% isolated yield
(Scheme 2). The rather surprising structure of 10, incorporat-
ing the 2-cyano-2-propyl moiety of the initiator, was
Scheme 2. Cyclization in the N-Methyl Series
(14) (a) Bennasar, M.-L.; Roca, T.; Griera, R.; Bosch, J. Org. Lett. 2001,
3, 1697-1700. (b) Bennasar, M.-L.; Roca, T.; Griera, R.; Bosch, J. J. Org.
Chem. 2001, 66, 7547-7551. (c) Bennasar, M.-L.; Roca, T.; Ferrando, F.
Org. Lett. 2004, 6, 759-762.
(15) For previous cyclizations of acyl radicals upon indoles and pyrroles
under n-Bu3SnH-AIBN conditions, see: (a) Miranda, L. D.; Cruz-Almanza,
R.; Pavo´n, M.; Alva, E.; Muchowski, J. M. Tetrahedron Lett. 1999, 40,
7153-7157. (b) Allin, S. M.; Barton, W. R. S.; Bowman, W. R.; McInally,
T. Tetrahedron Lett. 2001, 42, 7887-7890.
(16) Bennasar, M.-L.; Roca, T.; Ferrando, F. Tetrahedron. Lett. 2004,
45, 5605-5609.
(17) Bennasar, M.-L.; Roca, T.; Ferrando, F. J. Org. Chem. 2005, 70,
9077-9080.
(18) The placement of a carbonyl group in the tether chain was discarded
as it would probably diminish the reactivity of the acyl radical.
562
Org. Lett., Vol. 8, No. 4, 2006