340
E.R. dos Santos et al. / Chemical Physics Letters 418 (2006) 337–341
Table 2
5. Conclusion
Spherical atomic coordinates for the Sparkle/AM1 coordination polyhe-
dron of the Eu(fod)3 Æ 2H2O complex
We have synthesized the europium diphenbipy complex.
The coordination was determined from the chemical ana-
lytical data and from the changes in the IR, UV–Vis spec-
tra observed after the substitution of the two water
molecules in the first sphere of the coordination of Eu+3
ion by the diphenbipy ligand.
The substitution of the water molecules by diphenbipy
in the Eu(fod)3 Æ 2H2O complex has led to an increase in
the intensity of the luminescence which can be associated
to the low symmetry on the site.
˚
Atom
R (A)
h (ꢂ)
0.00
/ (ꢂ)
0.00
7.85
70.39
278.10
212.66
131.98
298.21
135.98
188.52
Eu3+
0.00
2.38
2.38
2.38
2.38
2.38
2.38
2.39
2.39
O (fod) (1.258, 2.2)
O (fod) (1.258, 2.2)
O (fod) (1.258, 2.2)
O (fod) (1.258, 2.2)
O (fod) (1.258, 2.2)
O (fod) (1.258, 2.2)
O (H2O) (1.258, 0.6)
O (H2O) (1.258, 0.6)
85.57
82.65
69.62
70.37
145.27
152.31
81.97
4.53
The charge factors and the polarizability appear beside the ion (g, a in
The high value of the X2 intensity parameter for the
complex with diphenbipy reflects the hypersensitive behav-
3
10ꢀ24 A ).
˚
7
ior of the 5D0 ! F2 transition and indicates that the Eu+3
ion is in a high polarizable chemical environment.
The reconciliation among the data from the theoretical
7F1 manifold splitting, and the intensity parameter certifies
the reliability of the models used in the theoretical
calculations.
Table 3
Spherical atomic coordinates for the Sparkle/AM1 coordination polyhe-
dron of the Eu(fod)3 Æ diphenbipy complex
˚
Atom
R (A)
h (ꢂ)
0.00
/ (ꢂ)
0.00
1.97
63.90
279.21
215.27
141.53
293.34
136.92
23.36
Eu3+
0.00
2.39
2.39
2.39
2.38
2.39
2.38
2.51
2.51
O (fod) (1.918, 3.36)
O (fod) (1.918, 3.36)
O (fod) (1.918, 3.36)
O (fod) (1.918, 0.03)
O (fod) (1.918, 3.36)
O (fod) (1.918, 0.03)
N (diphenbipy)(3.188, 0.03)
N (diphenbipy) (3.188, 0.03)
87.70
91.03
71.19
80.42
143.99
150.87
60.86
11.94
Acknowledgments
We appreciate the financial support from CNPq and
CAPES (Brazilian agencies), FAP-SE and also Grants
from the Instituto do Mileˆnio de Materiais Complexos.
We also thank CENAPAD (Centro Nacional de Processa-
mento de Alto Desempenho) at Campinas, Brazil.
The charge factors and the polarizability appear beside the ion (g, a in
3
10ꢀ24 A ).
˚
References
´
´
´
[1] C. de Mello Donega, S.A. Junior, G.F. de Sa, J. Chem. Soc. Chem.
Comm. 10 (1996) 1199.
Table 4
[2] N. Sabbatini, M. Guardigli, J.-M. Lehn, Coord. Chem. Rev. 123
(1993) 201.
[3] N. Sabbatini, M. Guardigli, I. Manet, R. Ungaro, A. Casti, R.
Ziessel, G. Ulrich, Z. Asfari, J.-M. Lehn, Pure Appl. Chem. 67 (1995)
135.
Experimental and theoretical values of the intensity parameters X2 and X4
in 10ꢀ20 cm2, the splitting of the 7F1 manifold, DE0–1 in the Eu(fo-
d)3 Æ 2H2O and in the Eu(fod)3 Æ diphenbipy complexes
Eu(fod)3 Æ 2H2O
Eu(fod)3 Æ diphenbipy
[4] R.O. Freire, R.Q. Albuquerque, S. Alves Jr., G.B. Rocha, M.E. de
Mesquita, J. Chem. Phys. Lett. 405 (2005) 123.
[5] R.O. Freire, M.O. Rodrigues, F.R. Gonc¸alves e Silva, N.B. da Costa
Ju´nior, M.E. de Mesquita, J. Molecul. Model. (2005), doi:10.1007/
Experimental Theoretical Experimental Theoretical
X2
X4
10.9 · 10ꢀ20
2.1 · 10ꢀ20
190.4
10.9 · 10ꢀ20 17.9 · 10ꢀ20
17.9 · 10ꢀ20
2.6 · 10ꢀ20
184.5
2.1 · 10ꢀ20
2.6 · 10ꢀ20
DEmax (cmꢀ1
)
190.3
184.5
[6] R.O. Freire, G.B. Rocha, A.M. Simas, Inorg. Chem. 44 (9) (2005)
3299.
[7] R.O. Freire, N.B. da Costa Jr., G.B. Rocha, A.M. Simas, J.
Organomet. Chem. 690 (2005) 4099.
[8] N.B. da Costa Jr., R.O. Freire, G.B. Rocha, A.M. Simas, Inorg.
Chem. Comm. 8 (2005) 831.
[9] R.O. Freire, G.B. Rocha, A.M. Simas, Chem. Phys. Lett. 411 (2005)
61.
[10] R.O. Freire, G.B. Rocha, A.M. Simas, J. Comput. Chem. 26 (14)
(2005) 1524.
has a very well-established analytical expression. The theo-
retical calculations have reproduced the experimental val-
ues of the 7F1 manifold in both complexes using the
charge factors appearing in Tables 2 and 3. The very high
value of the X2 for Eu(fod)3 Æ diphenbipy reflects the hyper-
sensitive behavior of the D0 ! F2 transition. In our cal-
culations, it was possible to distinguish between the
forced electric dipole and the dynamic coupling mecha-
nism. We found that this latter largely dominates because
it was not possible to fit theoretically the experimental
intensity parameters data without entering this contribu-
tion into the Xk equation [23]. This can be seen by means
of the polarizability values achieved for the ligating oxygen
and nitrogen ions (see Tables 2 and 3).
5
7
[11] M.E. de Mesquita, S. Alves Jr., F.C. Oliveira, R.O. Freire, N.B.C.
´
Ju´nior, G.F. de Sa, Inorg. Chem. Comm. 5 (2002) 292.
[12] M.E. de Mesquita, F.R.G. e Silva, R.Q. Albuquerque, R.O. Freire,
E.C. da Conceic¸ao, J.E.C. da Silva, N.B.C. Ju´nior, G.F. de Sa´, J.
˜
Alloy. Comp. 366 (2004) 124.
[13] M.E. de Mesquita, S.A. Ju´nior, F.R.G. e Silva, M.A. Couto dos
´
Santos, R.O. Freire, N.B.C. Ju´nior, G.F. de Sa, J. Alloy. Comp. 374
(2004) 320.
[14] O.L. Malta, Chem. Phys. Lett. 88 (1982) 353.