D. Ok et al. / Bioorg. Med. Chem. Lett. 16 (2006) 1358–1361
Table 3. Pharmacokinetic properties and anti-allodynic efficacy
1361
References and notes
2
13
13
40
13B
1. Waxman, S. G.; Cummins, T. R.; Dib-Hajj, S.; Fjell, J.;
Black, J. A. Muscle Nerve 1999, 22, 1177.
2. England, J. D.; Happel, L. T.; Kline, D. G.; Gamboni, F.;
Thouron, C. L.; Liu, Z. P.; Levinson, S. R. Neurology
1996, 47, 272.
3. Liu, X.; Zhou, J. L.; Chung, K.; Chung, J. M. Brain Res.
2001, 900, 119.
4. (a) Anger, T.; Madge, D. J.; Mullar, M.; Riddall, D.
J. Med. Chem. 2001, 44, 115; (b) Mao, J.; Chen, L. L. Pain
2000, 87, 7.
5. Priest, B. T.; Garcia, M. L.; Middleton, R. E.; Brochu, R.
M.; Clark, S.; Dai, G.; Dick, I. E.; Felix, J. P.; Liu, C. J.;
Reiseter, B. S.; Schmalhofer, W. A.; Shao, P. P.; Tang, Y.
S.; Chou, M. Z.; Kohler, M. G.; Smith, M. M.; Warren, V.
A.; Williams, B. S.; Cohen, C. J.; Martin, W. J.; Meinke,
P. T.; Parsons, W. H.; Wafford, K. A.; Kaczorowski, G. J.
Biochemistry 2004, 43, 9866.
HLM stabilitya
% remaining after 1 h
4
49
Pharmacokinetics (1 mg/kg iv)
Oral bioavailability (%)
Clp (mL/min/kg)
44
65
14.0
1.0
1.0
1.8
9.0
9.0
1.6
2.3
9.0
T0.5 (h)
b
1.6
1.9
5.3
Cmax (lM)
AUCb (lM/h)
Anti-allodynic efficacy (3 mg/kg po)
Maximal reversal (%) 43
25
31
a Human liver microsomal preparation.
bCmax and bAUC determined after oral dosing with 2 mg/kg for 2 or
3 mg/kg for 13 and 13B.
6. Djouhri, L.; Newton, R.; Levinson, S. R.; Berry, C. M.;
Carruthers, B.; Lawson, S. N. J. Physiol. 2003, 546, 565.
7. Shao, P. P.; Ok, D.; Fisher, M. H.; Garcia, M. L.;
Kaczorowski, G. J.; Li, C.; Lyons, K. A.; Martin, W. J.;
Meinke, P. T.; Priest, B. T.; Smith, M. M.; Wyvratt, M. J.;
Ye, F.; Parsons, W. H. Bioorg. Med. Chem. Lett. 2005, 15,
1901.
8. Kim, S. H.; Chung, J. M. Pain 1992, 50, 355.
9. Compound 3 was prepared according to a method for the
synthesis of 2 described in Ref. 7.
NaV1.7 activity is strongly influenced by the nature of
the substituents on both phenyl rings. The alcohols in
Tables 1 and 2 are a structurally simplified design and
lack one of the metabolic liabilities of compound 2.
Compounds 13 and 13B were chosen to examine the
effect of the hydroxypropyl substitution on the rat
pharmacokinetic profile (Table 3).
Compounds 13 displayed a slightly greater stability than
compound 2 in human liver microsome incubation stud-
ies and stability was greatly improved for 13B. Oral bio-
availability of 13 was comparable to that of 2, whereas
the single enantiomer 13B displayed improved bioavail-
ability, Cmax, and AUC. Compounds 13 and 13B
showed reduced clearance rates and increased half-lives
compared to 2, suggesting that removal of the N-Me
amide did indeed eliminate a site for metabolism. Com-
pounds 2, 13, and 13B were evaluated for anti-allodynic
efficacy in a rat model of chronic pain. In the CFA
model (intradermal injection of complete Freundꢀs adju-
vant)17, 13 and 13B significantly reversed CFA-induced
allodynia but failed to show an improvement in efficacy
over 2, possibly owing to their somewhat lower in vitro
potency against NaV1.7, although other factors such as
local tissue concentration or protein binding cannot be
ruled out.
10. Felix, J. P.; Williams, B. S.; Priest, B. T.; Brochu, R. M.;
Dick, I. E.; Warren, V. A.; Yan, L.; Slaughter, R. S.;
Kaczorowski, G. J.; Smith, M. M.; Garcia, M. L. Assay
Drug Dev. Technol. 2004, 2, 260.
11. Williams, J. M.; Jobson, R. B.; Yasuda, N.; Marchesini,
G.; Dolling, U.-H.; Grabowski, E. J. J. Tetrahedron Lett.
1995, 31, 5461.
12. The stereochemistry of the cyclopentane has been
unequivocally confirmed to be trans by an independent
synthesis of 34, which was prepared in a 4-step procedure
from commercially available trans-DL-1,2-cyclopentane
dicarboxylic acid.
O
O
CO2H
a, b
HO2C
N
N
O
H
OCF3
OCF3
O
OH
c, d
N
H
In summary, replacement of the N-Me amide group of
the diamide 2 with an alcohol moiety has afforded a
number of potent amide–alcohol hybrids with in vitro
activity comparable to that of diamide 2 and with an
improved pharmacokinetic profile. Two benchmark
amide–alcohols are efficacious in a rat model of chronic
pain, and additional experiments will determine the
therapeutic potential of these compounds for the treat-
ment of chronic pain.
34
Synthesis of 34: (a) CDI, C6H5CH2NH2, THF; (b)
Me(MeO)NH Æ HCl, HOBT, BOP, i-Pr2NEt; (c)
PhCH2CH2MgBr, ether; (d) NaBH4, CH3OH.
13. Spectral (1H NMR, LC–MS) data on all intermediates and
final compounds were consistent with the proposed
structures.
14. Wang, J.; Della-Penna, K.; Wang, H.; Karczewski, J.;
Conolly, T. M.; Koblan, K. S.; Bennett, P. B.; Salata, J. J.
Am. J. Physiol. Heart Circ. Physiol. 2003, 284, H256.
15. Tamargo, J. Jpn. J. Pharmacol. 2000, 83, 1.
16. Column used: ChiralCel OD 4.6 · 250 mm, 10 lm. UV
detection at 300 nm. Elution (.75 ml/min) with heptane:
isopropyl alcohol (90:10) afforded successively the enan-
tiomers 13A (7.5 min) and 13B (8.9 min).
Acknowledgments
The authors thank Dr. Joseph L. Duffy for critically
reading the manuscript. We further thank Erin McGo-
wan, Xiaohua Li, Feng Ye, Pengcheng P. Shao, William
A. Schmalhofer, and Vivien A. Warren for their out-
standing technical contributions to this work.
17. Gould, H. J., 3rd; Gould, T. N.; Paul, D.; England, J. D.;
Liu, Z. P.; Reeb, S. C.; Levinson, S. R. Brain Res. 1999,
824, 296.