L. J. Prins et al. / Tetrahedron Letters 47 (2006) 2735–2738
2737
5. Kim, Y.; Jnaneshwara, G. K.; Verkade, J. G. Inorg. Chem.
2003, 42, 1437–1447.
6. Wang, W.; Fujiki, M.; Nomura, K. Macromol. Rapid
Commun. 2004, 25, 504–505.
7. Ugrinova, V.; Ellis, G. A.; Brown, S. N. Chem. Commun.
2004, 468–469.
8. Fortner, K. C.; Bigi, J. P.; Brown, S. N. Inorg. Chem.
2005, 44, 2803–2814.
R
R
OH
+
CHO
OBn
K2CO3
Br
Ph
CH3CN, N2
reflux
CHO
NaHB(AcO)3
NH4AcO, THF
N2, rt, overnight
2a R=H
7a R=H (89%)
2e R=Me
2f R=t-Bu
2g R=Ph
7e R=Me (77%)
7f R=t-Bu (98%)
7g R=Ph (87%)
9. Kim, Y.; Verkade, J. G. Phosphorus, Sulfur Silicon Relat.
Elem. 2004, 179, 729–732.
10. Davidson, M. G.; Doherty, C. L.; Johnson, A. L.; Mahon,
M. F. Chem. Commun. 2003, 1832–1833.
11. Motekaitis, R.; Martell, A. E.; Koch, S. A.; Hwang, J.;
Quarless, D. A., Jr.; Welch, M. J. Inorg. Chem. 1998, 37,
5902–5911.
12. Hwang, J.; Govindaswamy, K.; Koch, S. A. Chem.
Commun. 1998, 1667–1668.
13. Groysman, S.; Segal, S.; Goldberg, I.; Kol, M.; Goldsch-
midt, Z. Inorg. Chem. Commun. 2004, 7, 938–941.
14. Groysman, S.; Segal, S.; Shamis, M.; Goldberg, I.; Kol,
M.; Goldschmidt, Z.; Hayut-Salant, E. J. Chem. Soc.-
Dalton Trans. 2002, 3425–3426.
R
R
H2, Pd/C
AcOEt, 2-4 hs, rt
OH
OBn
N
3
N
3
8a R=H (50%)
1a R=H (quant.)
8e R=Me (75%)
8f R=t-Bu (75%)
8g R=Ph (50%)
1e R=Me (quant.)
1f R=t-Bu (quant.)
1g R=Ph (quant.)
Scheme 4. Synthesis of triphenol amines 1a,e–g via reductive amina-
tion using an O-benzyl protecting group.
15. Kim, Y. J.; Kapoor, P. N.; Verkade, J. G. Inorg. Chem.
2002, 41, 4834–4838.
16. Kim, Y.; Verkade, J. G. Inorg. Chem. 2003, 42, 4804–
4806.
17. Timosheva, N. V.; Chandrasekaran, A.; Day, R. O.;
Holmes, R. R. Organometallics 2001, 20, 2331–2337.
18. Chandrasekaran, A.; Day, R. O.; Holmes, R. R. J. Am.
Chem. Soc. 2000, 122, 1066–1072.
under the reductive conditions, indicating the lower
reactivity of the benzylic amine versus the benzylic ether.
Triphenolamines 1a,e–g were quantitatively obtained as
pure white solids, which did not require further purifica-
tion. Optionally, the ligands can be recrystallized from
toluene. The overall yields were in the order of 40–70%.
19. Timosheva, N. V.; Chandrasekaran, A.; Day, R. O.;
Holmes, R. R. Organometallics 2000, 19, 5614–5622.
20. Timosheva, N. V.; Chandrasekaran, A.; Day, R. O.;
Holmes, R. R. J. Am. Chem. Soc. 2002, 124, 7035–7040.
21. Hajela, S. P.; Johnson, A. R.; Xu, J.; Sunderland, C. J.;
Cohen, S. M.; Caulder, D. L.; Raymond, K. N. Inorg.
Chem. 2001, 40, 3208–3216.
22. George, J. P.; Britovsek, G. J.; England, J.; Andrew, J. P.;
White, A. J. P. Inorg. Chem. 2005, 44, 8125–8134.
23. Removal of the commonly used methylether protecting
group using Lewis acids such as BBr3 or AlCl3 appears not
to be effective when bulky substituents in the phenolic
ortho-position are present.
24. Verner, E.; Katz, B. A.; Spencer, J. R.; Allen, D.; Hataye,
J.; Hruzewicz, W.; Hui, H. C.; Kolesnikov, A.; Li, Y.;
Luong, C.; Martelli, A.; Radika, K.; Rai, R.; She, M.;
Shrader, W.; Sprengeler, P. A.; Trapp, S.; Wang, J.;
Young, W. B.; Mackman, R. L. J. Med. Chem. 2001, 44,
2753–2771.
25. Antonisse, M.; Snellink-Rue¨l, B. H. M.; Ion, A. C.;
Engbersen, J. F. J.; Reinhoudt, D. N. J. Chem. Soc.,
Perkin Trans. 2 1999, 1211.
In conclusion, the reported method allows the synthesis
of highly pure ortho-substituted triphenolamines 1 with
very satisfactory yield. This approach allows, for the
first time, access to this increasingly important class of
ligands in a structurally systematic way using either
commercially or easily synthesizable building blocks.
Currently, we are employing this methodology for the
synthesis of a large library of this class of ligands for
application in coordination chemistry and catalysis.
Acknowledgments
L.J.P., M.M.B., and A.K. acknowledge the financial
support provided through the European Community’s
Human Potential Programme under contract HPRN-
CT-2001-00187 [AC3S]. The support and sponsorship
by MIUR, FIRB-2003 CAMERE-RBNE03JCR5
project and COST, Action D24 ‘Sustainable Chemical
Processes: Stereoselective Transition Metal-Catalysed
Reactions’ (WG D24/0005/2001) are also kindly
acknowledged.
26. Boger, D. L.; Hong, J.; Hikota, M.; Ishida, M. J. Am.
Chem. Soc. 1999, 121, 2471–2477.
27. A typical procedure for the reductive amination is as
follows: Salicyl aldehyde (3 equiv) and ammonium acetate
(1 equiv) were mixed in THF (ꢀ0.05 N) and sodium
triacetoxy borohydride (4.5 equiv) was added under a N2-
atmosphere. The mixture was stirred overnight at room
temperature and evaporated to dryness. The residue was
dissolved in AcOEt and washed twice with 5% KOH aq
(making sure that the aqueous layer remains basic) and
brine. Drying over Mg2SO4 and evaporation of the solvent
gave a crude product that was purified by recrystallization
or column chromatography.
References and notes
1. Bull, S. D.; Davidson, M. G.; Johnson, A. L.; Robinson,
D. E. J. E.; Mahon, M. F. Chem. Commun. 2003, 1750–
1751.
2. Kol, M.; Shamis, M.; Goldberg, I.; Goldschmidt, Z.; Alfi,
S.; Hayut-Salant, E. Inorg. Chem. Commun. 2001, 4, 177–
179.
28. Fkyerat, A.; Dubin, G.-M.; Tabacchi, R. Helv. Chim. Acta
1999, 82, 1418–1422.
3. Michalczyk, L.; De Gala, S.; Bruno, J. W. Organometallics
2001, 20, 5547–5556.
29. Wang, Q.; El Khoury, M.; Schlosser, M. Chem. Eur. J.
2000, 6, 420–426.
4. Kim, Y.; Verkade, J. G. Organometallics 2002, 21, 2395–
2399.