4 K. Yagi, K. Akimoto, N. Mimori, T. Miyake, M. Kudo, K. Arai and
S. Ishii, Pest Manage. Sci., 2000, 56, 65.
Conclusions
5 G. Shaw, in Comprehensive Heterocyclic Chemistry, A. R. Katritzky,
C. W. Rees (ed.), Pergamon Press: Oxford, 1996, vol. 7, pp. 397–429.
6 (a) H. Wamhoff, J. Dzenis and K. Hirota, Adv. Heterocycl. Chem.,
1992, 55, 129; (b) D. J. Brown, in Comprehensive Heterocyclic
Chemistry; A. R. Katritzky, C. W. Rees (ed.), Pergamon Press:
Oxford, 1984, vol. 3, pp. 57–155.
7 F. Bigi, R. Maggi and G. Sartori, Green Chem., 2000, 2, 140.
8 J. E. McCusker, A. D. Main, K. S. Johnson, C. A. Grasso and L.
McElwee-White, J. Org. Chem., 2000, 65, 5216.
In summary, for the first time, a facile and efficient [TMG] [Ac]
mediated one-pot synthesis of 6-aminouracils from aromatic, as
well as aliphatic, amines is described. In this procedure, three
C–N bonds are formed in the one-pot process. Thus, the con-
ventional multistep synthetic methodologies for 6-aminouracils
were replaced by a one-pot catalytic system, which provides a
means to improve the economical and environmental aspects
of chemical process. The catalytic system is easy to prepare
and very efficient in terms of work up and reusability, with
additional advantages being that isolation and purification of the
intermediates is not required. Moreover, the same catalyst can
catalyze different consecutive steps in a single reaction vessel,
which reduces the operating time and the amount of waste
produced.
9 B. S. Furniss, A. J. Hannaford, P. W. G. Smith and A. R. Tatchell,
Vogel’s textbook of practical organic chemistry, 5th edition, pp 963–
966.
10 W. Traube, Ber., 1900, 33, 3095.
11 J. H. Speer and A. L. Raymond, J. Am. Chem. Soc., 1953, 75, 114.
12 V. Papech and E. F. Schroeder, J. Org. Chem., 1951, 16, 1879.
13 K. M. Ulrike, E. Helmut, M. Joachim, J. K. Franz, L. Erich, and M.
Enzio, US pat. 5719279, 1998.
14 I. Devi and P. J. Bhuyan, Tetrahedron Lett., 2005, 46, 5727.
15 F. Fulle and C. E. Muller, Heterocycles, 2000, 53, 347.
16 (a) C. J. Shishoo, K. S. Jain, S. R. Jain, S. V. Shah and T. Ravikumar,
Indian J. Chem., 1996, 35B, 662; (b) S. J. Coulson, R. E. Ford, E. Lunt,
S. Marshall, D. L. Pain, I. H. Rogers and K. R. H. Wooldridge, Eur. J.
Med. Chem., 1974, 9, 313; (c) Ridi, Annali di Chimica (Rome Italy),
1960, 50, 505.
17 (a) T. Welton, Chem. Rev., 1999, 99, 2071; (b) J. P. Hallett and T.
Welton, Chem. Rev., 2011, 111, 3508.
18 J. S. Wilkes, Green Chem., 2002, 4, 73.
19 (a) A. Zhu, T. Jiang, T. Wang, B. Han, L. Liu, J. Huang, J. Zhang
and D. Sun, Green Chem., 2005, 7, 514; (b) T. Jiang, H. Gao, B. Han,
G. Zhao, Y. Chang, W. Wu, L. Gao and G. Yang, Tetrahedron Lett.,
2004, 45, 2699; (c) H. Kunkel and G. Maas, Eur. J. Org. Chem., 2007,
22, 3746.
20 (a) J. Huang, T. Jiang, H. Gao, B. Han, Z. Liu, W. Wu, Y. Chang
and G. Zhao, Angew. Chem., Int. Ed., 1999, 43, 1397; (b) J. Shah,
H. Blumenthal, Z. Yacob and J. Liebscher, Adv. Synth. Catal., 2008,
350, 1267; (c) L. Gharnati, O. Walter, U. Arnold and M. Doring, Eur.
J. Inorg. Chem., 2011, 17, 2756; (d) L. C. Branco, P. M. P. Gois, N. M.
T. Lourenco, V. B. Kurteva and C. A. M. Afonso, Chem. Commun.,
2006, (22), 2371.
General procedure for Table 2 and Table 3
To a stirred mixture of [TMG] [Ac] (1 g) and water (0.3 ml)
was added amine (1 mmol) followed by cyanate (1 mmol) and
the mixture was heated to 60 ◦C for 30 min. To this, a solution
of cyanoacetic acid (1 m◦mol) in acetic anhydride (2 mmol) was
added and heated at 60 C for 60 min to give a ◦clear solution,
then the reaction temperature was raised to 90 C and stirred
for a further 60 min. The progress of the reaction was monitored
by TLC. After completion of the reaction, cold water (5 ml) was
added and stirred for 5 min. The precipitated solid was collected
by filtration, washed with water (5 ml) and dried to obtain the
corresponding 6-aminouracil. The ionic liquid was recovered
by removing the water under reduced pressure and could be
reused at least five times without any appreciable decrease in
yield.
21 (a) W. Wu, B. Han, H. Gao, Z. Liu, T. Jiang and J. Huang, Angew.
Chem., Int. Ed., 2004, 43, 2415; (b) N. M. M. Mateus, L. C. Branco,
N. M. T. Lourenc¸o and C. A. M. Afonso, Green Chem., 2003, 5, 347;
(c) J. Akbari, M. Hekmati, M. Sheykhan and A. Heydari, ARKIVOC,
2009, 123; (d) Y. Peng, G. Song and F. Huang, Monatsh. Chem., 2005,
136, 727.
Acknowledgements
Financial support of this research by the Univer-
sity Grant Commission (UGC) Delhi, India is greatly
acknowledged.
22 (a) S. Li, Y. Lin, H. Xie, S. Zhang and J. Xu, Org. Lett., 2006, 8, 391;
(b) X. Xin, X. Guo, H. Duan, Y. Lin and H. Sun, Catal. Commun.,
2007, 8, 115.
23 Y. O. Sharma and M. S. Degani, J. Mol. Catal. A: Chem., 2007, 277,
Notes and references
215.
1 S. Ohwada, T. Ikeya, T. Yokomori, T. Kusaba, T. Roppongi, T.
Takahashi, S. Nakamura, S. Kakinuma, S. Iwazaki, H. Ishikawa,
S. Kawate, T. Nakajima and Y. Morishita, Br. J. Cancer, 2004, 90(5),
1003.
2 D. Peters, A. B. Hoernfeldt, S. Gronowitz and N. G. Johansson,
Nucleosides Nucleotides, 1992, 11(6), 1151.
3 M. Dooley and K. L. Goa, Drugs, 1998, 56, 929.
24 Y. O. Sharma and M. S. Degani, Green Chem., 2009, 11, 526.
25 S. S. Chavan, Y. O. Sharma and M. S. Degani, Green Chem. Lett.
Rev., 2009, 2, 175.
26 Y. O. Sharma and M. S. Degani, Green Chem. Lett. Rev., 2010, 3,
201.
27 H. Gao, B. Han, J. Li, T. Jiang, Z. Liu, W. Wu, Y. Chang and J.
Zhang, Synth. Commun., 2004, 34, 3083.
This journal is
The Royal Society of Chemistry 2012
Green Chem., 2012, 14, 296–299 | 299
©