C. Wang et al. / Bioorg. Med. Chem. Lett. 22 (2012) 2579–2581
2581
O
In conclusion, with the broad interest in repurposing PDE inhib-
itors for neglected diseases11,20,21 and the extensive precedent in
medicinal chemistry for human PDE5 inhibitors, we note our find-
ing that these initial sildenafil analogs do not represent as strong
starting points for further optimization for TbrPDEB inhibition as
the PDE4 chemotypes previously reported.11 This information
may be deemed important for re-prioritizing the focus of these
efforts.
O
N
N
a, b
HN
R5
H2N
H2N
N
N
N
Pr
Pr
24a-d
23
Scheme 3. Synthesis of 24a–d. Reagents and conditions: (a) R5CO2H, imidazole-
HCl, CDI, then 23, 50 °C, o/n; (b) EtOH, NaOEt, 120 °C, 2 h. Refer to Table 2 for the
identity of R-groups.
Acknowledgments
This work was supported by the National Institutes of Health
(R01AI082577), Boston University and Northeastern University.
We gratefully acknowledge a donation of sildenafil 1 from Pfizer,
Inc. and a free academic license to the OpenEye suite of software.
O
Pr
N
Cl
O
R
N
N
O
HN
N
b
a
N
23
N
N
H
N
NH2
Pr
O
26a
: R=iPr
Supplementary data
25
26b: R=Et
26c: R=Me
Full tabulation of all inhibitors prepared and screened in the
context of this project is included in the Supplementary data, along
with spectroscopic characterization of new compounds. Screening
data will be made publically available as a public data set in the
Scheme 4. Synthesis of 26a–c. Reagents and conditions: (a) 2-Chloronicotinic acid,
PyBroP, Et3N; (b) R-OH, KOtBu.
Table 2
Analogs of sildenafil (Strategy A)
Supplementary data associated with this article can be found, in
#
Compound
R5
TbrPDEB1a (% inh)
1
2
3
4
5
6
7
26c
24a
26a
26b
24b
24c
24d
2-Methoxy-3-pyridyl
3-Methyl-2-pyridyl
2-Isopropoxy-3-pyridyl
2-Ethoxy-3-pyridyl
2-Methyl-5-pyrazinyl
2,4-Dimethyloxazol-5-yl
Thiazol-4-yl
77.2
72.1
53.8
41.5
30.0
29.0
25.4
References and notes
1. Stuart, K.; Brun, R.; Croft, S.; Fairlamb, A.; Gurtler, R. E.; McKerrow, J.; Reed, S.;
Tarleton, R. J. Clin. Invest. 2008, 118, 1301.
World Health Organization, accessed 23.01.2012.
4. Pollastri, M. P.; Campbell, R. K. Future Med. Chem. 2011, 3, 1307.
5. Menniti, F. S.; Chappie, T. A.; Humphrey, J. M.; Schmidt, C. J. Curr. Opin. Investig.
Drugs 2007, 8, 54.
a
Standard assay conditions: 100 lM, 10% DMSO.
6. Menniti, F. S.; Faraci, W. S.; Schmidt, C. J. Nat. Rev. Drug Disc. 2006, 5, 660.
7. Lugnier, C. Pharmacol. Ther. 2006, 109, 366.
8. Gould, M. K.; de Koning, H. P. FEMS Microbiol. Rev. 2011.
9. Oberholzer, M.; Marti, G.; Baresic, M.; Kunz, S.; Hemphill, A.; Seebeck, T. FASEB
J. 2007, 21, 720.
10. Shakur, Y.; de, K. H. P.; Ke, H.; Kambayashi, J.; Seebeck, T. Handb. Exp.
Pharmacol. 2011, 487.
11. Bland, N. D.; Wang, C.; Tallman, C.; Gustafson, A. E.; Wang, Z.; Ashton, T. D.;
Ochiana, S. O.; McAllister, G.; Cotter, K.; Fang, A. P.; Gechijian, L.; Garceau, N.;
Gangurde, R.; Ortenberg, R.; Ondrechen, M. J.; Campbell, R. K.; Pollastri, M. P. J.
Med. Chem. 2011, 54, 8188.
12. Ochiana, S. O.; Gustafson, A.; Bland, N. D.; Wang, C.; Campbell, R. K.; Pollastri,
13. Wang, H.; Yan, Z.; Geng, J.; Kunz, S.; Seebeck, T.; Ke, H. Mol. Microbiol. 2007,
1029, 66.
14. Baxendale, I. R.; Ley, S. V. Bioorg. Med. Chem. Lett. 1983, 2000, 10.
15. Liu, H.; He, X.; Choi, H.-S.; Yang, K.; Woodmansee, D.; Wang, Z.; Ellis, D. A.; Wu,
B.; He, Y.; Nguyen, T. N., 2006; WO2006047516A2.
16. Antilla, J. C.; Baskin, J. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2004, 69,
5578.
17. DeWald, H. A.; Beeson, N. W.; Hershenson, F. M.; Wise, L. D.; Downs, D. A.;
Heffner, T. G.; Coughenour, L. L.; Pugsley, T. A. J. Med. Chem. 1988, 31, 454.
18. Yuan, J.; Gulianello, M.; De, L. S.; Brodbeck, R.; Kieltyka, A.; Hodgetts, K. J.
Bioorg. Med. Chem. Lett. 2002, 12, 2133.
This was achieved by condensing the commercially available pyra-
zole amino amide 23 with various monocyclic heteroaromatic car-
boxylic acids that were available in pre-weighed quantities from a
commercial vendor (ASDI, Inc). Following this amidation reaction,
cyclization was achieved by treatment with sodium ethoxide in
ethanol.
A series of 2-alkoxy-3-pyridyl variations were prepared as
shown in Scheme 4. The acylated aminopyrazole 25 was cyclized
under basic conditions, using an appropriate alcoholic solvent,
which yielded the 2-alkoxypyridyl derivatives 26.
Table 2 summarizes the biochemical results for analogs pre-
pared using this parallel methodology that display >25% inhibition
at 100 lM (characterization and biochemical data for all com-
pounds are listed in the Supplementary data). In brief, heterocycles
show improved potency at TbrPDEB1, specifically, 2-methoxy-3-
pyridyl and 3-methyl-2-pyridyl show the best potency (entries
1–2); larger 2-alkoxy groups (entries 3 and 4) lead to reduced
activity. Unfortunately, dose–response experiments with 26c were
precluded by poor solubility at higher concentrations.
While we appreciate that the potencies of the compounds
shown in Tables 1 and 2 are modest, it is clear that 7, 26c and
24a represent qualitative potency improvement over 1. Nonethe-
less, the current exploration of the various regions of the sildenafil
template is not suggestive of promising structure–activity relation-
ship trends.
19. Fletcher, S. R.; Menet, C. J. M.; Dykes, G. J.; Merayo, M. N.; Schmitt, B. A., 2008;
WO2008071650A2.
20. Seebeck, T.; Sterk, G. J.; Ke, H. Future Med. Chem. 2011, 3, 1289.
21. Beghyn, T. B.; Charton, J.; Leroux, F.; Laconde, G.; Bourin, A.; Cos, P.; Maes, L.;
Deprez, B. J. Med. Chem. 2011, 54, 3222.