4
Tetrahedron Letters
(c) N.-R. Candeias, P. M. P. Gois, C. A. M. Afonso, Chem.
On the basis of previous literature [19], the insertion
Commun. 3 (2005), 391–393.
process might occur in an asynchronous manner, and a
plausible reaction mechanism is proposed in Scheme 3.
(d) V. K.-Y. Lo, Z. Guo, M. K.-W. Choi, W.-Y. Yu, J.-S. Huang,
C.-M. Che, J. Am. Chem. Soc. 134 (2012), 7588–7591.
(e) X. Xu, Y. Deng, D. N. Yim, P.Y. Zavalij, M. P. Doyle, Chem.
Sci. 6 (2015), 2196–2201.
(f) H. Nakayama, S. Harada, M. Kono, T. Nemoto, J. Am. Chem.
Soc. 139 (2017), 10188–10191.
Initially, the diazoacetamide
complex to form a ruthenium carbene complex,
Subsequently, a C–H bond reacts with the reactive site of the
intermediate, , resulting in the formation of . Finally, the
reductive elimination of ruthenium produces with the
concurrent regeneration of the Ru(II)–Pheox catalyst.
1
is reduced by the Ru(II)–Pheox
A
[20].
7. (a) Z. Chen, Z. Chen, Y. Jiang, W. Hu, Tetrahedron 61 (2005),
1579–1586.
(b) L. F. R. Gomes, A. F. Trindade, N. R. Candeias, P. M. P. Gois,
C. A. M. Afonso, Tetrahedron Lett. 49 (2008), 7372–7375.
8. (a) M. P. Doyle, M. Yan, I. M. Phillips, D. J. Timmons, Adv. Synth.
Catal. 1 (2002), 91–95.
A
B
2
(b) C. H. Yoon, A. Nagle, C. Chen, D. Gandhi, K. W. Jung, Org.
Lett. 5 (2003), 2259–2262.
9. (a) A. G. H. Wee, S. C. Duncan, G. Fan, Tetrahedron Asymmetry
17 (2006), 297–307.
(b) A. G. H. Wee, S. C. Duncan, Tetrahedron Lett. 43 (2002), 6173–
6176.
(c) B. Zhang, B. G. H. Wee, Org. Lett. 12 (2010), 5386–5389.
10. M. Budny, M. Nowak, A. Wojtczak, A. Wolan, Eur. J. Org. Chem.
29 (2014), 6361–6365.
11. (a) M. Grohmann, S. Buck, L. Schaffler, G. Maas, Adv. Synth.
Catal. 348 (2006), 2203–2211.
(b) M. Grohmann, G. Maas, Tetrahedron 63 (2007), 12172–12178.
(c) W.-J. Liu, Z.-L. Chen, Z.-Y. Che, W.-H. Hu, Tetrahedron
Asymmetry 16 (2005), 1693–1698.
12. (a) A. M. Abu-Elfotoh, K. Phomkeona, K. Shibatomi, S. Iwasa,
Angew. Chem. Int. Ed. 49 (2010), 8439–8443.
(b) S. Chanthamath, S. Iwasa, Acc. Chem. Res. 49 (2016), 2080–
2090.
(c) L. D. Ho, N. Otog, I. Fujisawa, S. Iwasa, Org. Lett. 21 (2019),
7470–7474.
Scheme 3. Proposed reaction mechanism.
(d) M. Kotozaki, S. Chanthamath, T. Fujii, K. Shibatomi, S. Iwasa,
Chem. Commun. 54 (2018), 5110–5113.
(e) S. Chanthamath, S. Thongjareun, K. Shibatomi, S. Iwasa,
Tetrahedron Lett. 53 (2012), 4862–4865.
(f) Y. Nakagawa, S. Chanthamath, I. Fujisawa, K. Shibatomi, S.
Iwasa, Chem. Commun. 53 (2017), 3753–3756.
(g) Y. Nakagawa, S. Chanthamath, Y. Liang, K. Shibatomi, S.
Iwasa, J. Org. Chem. 84 (2019), 2607–2618.
(h) N. T. T. Phan, M. Tone, H. Inoue, I. Fujisawa, S. Iwasa, Chem.
Commun. 55 (2019), 13398–13401.
In summary, we developed an efficient method for the synthesis
of γ-lactams by the intramolecular Csp3–H insertion reaction
catalyzed by a Ru(II)–Pheox complex. Various γ-lactams were
successfully synthesized in moderate to high yield under mild
conditions. The Ru(II)–Pheox catalyst presented higher chemo-
and regioselectivities for the synthesis of the γ-lactam derivatives
than the conventional metal catalysts. The development of other
transformations and asymmetric versions is currently being
investigated in our laboratory.
13. (a) T. A. Brouder, C. N. Slattery, A. Ford, U. B. R. Khandavilli, E.
Skorepova, K. S. Eccles, M. Lusi, S. E. Lawrence, A. R. Maguire,
J. Org. Chem. 84 (2019), 7543–7563.
(b) C. J. Flynn, C. J. Elcoate, S. E. Lawrence, A. R. Maguire, J.
Am. Chem. Soc. 132 (2010), 1184–1185.
(c) J. M. Fraile, P. Lopez-Ram-de-Viu, J. A. Mayoral, M. Roldan,
J. Santafe-Valero, Org. Biomol. Chem. 9 (2011), 6075–6081.
14. (a) K. Dong, C. Pei, Q. Zeng, H. Wei, M. P. Doyle, X. Xu, ACS
Catal. 8 (2018), 9543–9549.
This work was supported by a Grant-in-Aid for Scientific
Research (B) (no.26288087) and Ikeda Bussan Co. Ltd..
Supplementary Material
(b) T. Goto, K. Takeda, N. Shimada, H. Nambu, M. Anada, M.
Shiro, K. Ando, S. Hashimoto, Angew. Chem. Int. Ed. 50 (2011),
6803–6808.
(c) T. Goto, K. Takeda, M. Anada, K. Ando, S. Hashimoto,
Tetrahedron Lett. 52 (2011), 4200–4203.
Supplementary data to this article can be found online at
References
15. H. Nishiyama, Y. Itoh, Y. Sugawara, H. Matsumoto, K. Aoki, K.
Itoh, Bull. Chem. Soc. Jpn. 68 (1995), 1247–1262.
16. (a) E. Buchner, T. Curtius, Ber. Dtsch. Chem. 18 (1885), 2377–
2379.
(b) S. Mo, X. Li, J. Xu, J. Org. Chem. 79 (2014), 9186–9195.
17. (a) L.-Z. Huang, Z. Xuan, H. J. Jeon, Z.-T. Du, J. H. Kim, S. Lee,
ACS Catal. 8 (2018), 7340–7345.
(b) D. Sole, F. Perez-Janer, M. Bennasar, I. Fernandez, Chem Eur.
J. 32 (2018), 4446–4455.
18. M. P. Doyle, A. B. Dyatkin, G. H. P. Roos, F. Canas, D. A. Pierson,
A. V. Basten, P. Mueller, P. Polleux, J. Am. Chem. Soc. 116 (1994),
4507–4508.
1. J. Caruano, J. J. Muccioli, R. Robiette, Org. Biomol. Chem. 14
(2016), 10134–10156.
2. H. Krawczyk, L. Albrecht, J. Wojciechowski, W. M. Wolf, U.
Krajewska, M. Różalski, Tetrahedron 64 (2008), 6307–6314.
3. H. Ikuta, H. Shirota, S. Kobayashi, Y. Yamagishi, K. Yamada, I.
Yamatsu, K. Katayama, J. Med. Chem. 30 (1987), 1995–1998.
4. S. Gao, Y. Q. Tu, X. Hu, S. Wang, R. Hua, Y. Jiang, Y. Zhao, X.
Fan, S. Zhang, Org. Lett. 8 (2006), 2373–2376.
5. (a) L.-W. Ye, C. Shu, F. Gagosz, Org. Biomol. Chem. 12 (2014),
1373–1481.
(b) C. Kammerer, G. Prestat, D. Madec, G. Poli, Acc. Chem. Res.
47 (2014), 3439–3447.
(c) S.-Y. Hong, Y. Park, Y. Hwang, Y.-B. Kim, M.-H. Baik, S.
Chang, Science 359 (2018), 1016–1021.
(d) F. Sanchez-Cantalejo., J. D. Priest, P. W. Davies, Chem. Eur. J.
24 (2018), 17215–17219.
19. (a) J. S. Clark, Y.-S. Wong, R. J. Townsend, Tetrahedron. Lett. 42
(2001), 6187–6190.
(b) S. Hashimoto, N. Watanabe, M. Anada, S. Ikegami, J. Synth.
Org. Chem. Jpn. 54 (1996), 988–999.
(c) D. F. Taber, K. K. You, A. L. Rheingold, J. Am. Chem. Soc. 118
(1996), 547–556.
6. (a) A. Ring, A. Ford, A. R. Maguire, Tetrahedron Lett. 57 (2016),
5399–5406.
20. H. Nishiyama, Y. Itoh, H. Matsumoto, S. B. Park, K. Itoh, J. Am.
Chem. Soc. 116 (1994), 2223−2224.
(b) A. Kaupang, H.-T. Bonge, Beilstein J. Org. Chem. 9 (2013),
1407–1413.