J . Org. Chem. 2002, 67, 591-593
591
Tamao-Corriu coupling reaction,6 various Heck-type
coupling reactions,7 amination of aryl chlorides,8 olefin
metathesis,9 and hydrogenation.10 Most recently, Her-
rmann has reported a palladium complex with mixed
carbene/phosphine ligand showing catalytic activity in
the dimerization of phenylacetylene.11 We wish to now
report a regio- and stereoselective dimerization of ter-
minal alkynes catalyzed by a palladium/imidazolium salt
system.
Regio- a n d Ster eoselective Dim er iza tion of
Ter m in a l Alk yn es to En yn es Ca ta lyzed by a
P a lla d iu m /Im id a zoliu m System
Chuluo Yang and Steven P. Nolan*
Department of Chemistry, University of New Orleans,
New Orleans, Louisiana 70148
snolan@uno.edu
We have established that active Pd-carbene species
can be formed in situ from a palladium precursor with
an imidazolium salt in various C-C coupling reactions
under basic conditions.5b,c,6 In initial experiments, a
catalytic system consisting of 1 mol % Pd(OAc)2 and 2
mol % IMes‚HCl with 2 equiv of Cs2CO3 as base in N,N-
dimethylacetamide (DMAc) at 80 °C was tested for
catalytic activity in the dimerization of 1-heptyne (eq 1).
The reaction reached completion in 2 h. The product
ratio of trans- and cis-1,4-disubstituted enyne (I and II)
and 1,3-disubstituted enyne (III) is 90:3:7, showing high
regio- and stereoselectivity. The stereostructure was
determined by the coupling constant between two vinyl
protons (J ) 16.0 Hz) for trans-enyne compared to cis-
enyne (J ) 11.8 Hz).
Received August 16, 2001
Abstr a ct: A Palladium/imidazolium chloride system has
been used to mediate the dimerization of terminal alkynes
to enynes. The combination of 1 mol % Pd(OAc)2 and 2 mol
% IMes‚HCl in the presence of Cs2CO3 as base shows high
activity and high regio- and steroselectivity for the dimer-
ization of aryl and aliphatic terminal alkynes to enynes.
Transition metal-catalyzed dimerization of terminal
alkynes is an attractive method for the synthesis of
enynes.1 It has found increasing application in the
construction of key structural moieties in natural prod-
ucts and electronic and optical materials.2 Usually, the
dimeric products include 1,3-disubstituted enynes from
the head-to-tail dimerization of alkynes and 1,4-disub-
stituted enynes from the head-to-head dimerization of
alkynes. High regio- and stereoselectivity has been the
continued emphasis in the area of alkyne dimerization.
Recently, some palladium-phosphine systems have dis-
played high activity and selectivity in the conversion of
alkynes into enynes.3
Nucleophilic N-heterocyclic carbenes have attracted
considerable attention as “phosphine mimics”.4 High
catalytic performances have been achieved by using
nucleophilic carbenes in various catalytic reactions such
as the Suzuki-Miyaura coupling reaction,5 the Kumada-
In optimization studies, 1-heptyne was used as the
model substrate. A survey of solvents for this system
showed nearly complete dimerization and similar product
distribution in a variety of solvents. Acetonitrile did not
appear to be a compatible solvent, presumably in view
of its coordinating nature (Table 1). The reaction rates
(1) (a) Straub, T.; Haskel, A.; Eisen, M. S. J . Am. Chem. Soc. 1995,
117, 6364-6365. (b) Barluenga, J .; Gonza´lez, J . M.; Llorente, I.;
Campos, P. J . Angew. Chem., Int. Ed. Engl. 1993, 32, 893-894. (c)
Horton, A. D. J . Chem. Soc., Chem. Commun. 1992, 185-187. (d) J un,
C.-H.; Lu, Z.; Crabtree, R. H. Tetrahedron Lett. 1992, 33, 7119-7120.
(e) Oshita, J .; Naka, A.; Ishikawa, M. Organometallics 1992, 11, 602-
606. (f) Bianchini C.; Peruzzini, M.; Zanobini, F.; Frediani, P.; Albinati,
A. J . Am. Chem. Soc. 1991, 113, 5453-5454. (g) Ohshita, J .; Furimori,
K.; Matsuguchi, A.; Ishikawa, M. J . Org. Chem. 1990, 55, 3277-3280.
(2) (a) Siemesen, P.; Livingston, R. C.; Diederich, F. Angew. Chem.,
Int. Ed. Engl. 2000, 39, 2632-2657 and references therein. (b) Trost,
B. M. In Homogeneous Transition Metal Catalyzed Reaction; Moser,
W. R., Slocum, D. W., Eds.; American Chemical Society: Washington,
DC, 1992. (c) Grotjahn, D. B. In Comprehensive Organometallic
Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.;
Pergamon Press: New York, 1995; Vol. 12. (d) Winter, M. J . In The
Chemistry of the Metal-Carbon Bond; Hartley, F. R., Patai, S., Eds.;
Wiley & Sons: Chichester, U.K., 1985; Vol.3.
(5) (a) Bo¨hm, V. P. W.; Gsto¨ttmayr, C. W. K.; Weskamp, T.;
Herrmann, W. A. J . Organomet. Chem. 2000, 595, 186-190. (b) Zhang,
C.; Huang, J .; Trudell, M. L.; Nolan, S. P. J . Org. Chem. 1999, 64,
3804-3805.
(6) Huang, J .; Nolan, S. P. J . Am. Chem. Soc. 1999, 121, 9889-
9890.
(7) (a) Yang, C.; Lee, H. M.; Nolan, S. P. Org. Lett. 2001, 3, 1511-
1514. (b) Yang, C.; Nolan, S. P. Synlett. 2001, 1539-1542. (c) McGuin-
ness, D. S.; Cavell, K. J . Organometallics 1999, 18, 1596-1605. (d)
Herrmann, W. A.; Fischer, J .; Elison, M.; Ko¨cher, C.; Artus, G. R. J .
Chem. Eur. J . 1996, 2, 772-780. (e) Herrmann, W. A.; Elison, M.;
Fischer, J .; Ko¨cher, C.; Artus, G. R. J . Angew. Chem., Int. Ed. Engl.
1995, 34, 2371-2373.
(3) (a) Lu¨cking, U.; Pfaltz, A. Synlett. 2000, 1261-1264. (b) Trost,
B. M.; Sorum, M. T.; Chan, C.; Harms, A. E.; Ru¨ther, G. J . Am. Chem.
Soc. 1997, 119, 698-708 and references therein. (c) Trost, B. M.; Chan,
C.; Ru¨ther, G. J . Am. Chem. Soc. 1987, 109, 3486-3487.
(4) (a) Bourissou, D.; Guerret, O.; Gabba¨ı, F. P.; Bertrand, G. Chem.
Rev. 2000, 100, 39-91 and references therein. (b) Chatterjee, A. K.;
Grubbs, R. H. Org. Lett. 2000, 2, 1751-1753. (c) J afarpour, L.; Schanz,
H. J .; Stevens, E. D.; Nolan, S. P. Organometallics 1999, 18, 5416-
5419. (d) Dullius, J . E. L.; Suarez, P. A. Z.; Einloft, S.; de Souza, R. F.;
Dupont, J .; Fischer, J .; De Cian, A. Organometallics 1998, 17, 815-
819. (e) Aduengo, A. J ., III; Krafczyk, R. Chem. Z. 1998, 32, 6-14. (f)
Herrmann, W. A.; Ko¨cher, C. Angew. Chem., Int. Ed. Engl. 1997, 36,
2162-2187. (g) Regitz, M. Angew. Chem., Int. Ed. Engl. 1996, 35, 725-
728.
(8) (a) Huang, J .; Grasa, G.; Nolan, S. P. Org. Lett. 1999, 1, 1307-
1309. (b) Stauffer, S. R.; Lee, S.; Stambuli, J . P.; Hauck, S. I.; Hartwig,
J . F. Org. Lett. 2000, 2, 1423-1426. (c) Grasa, G. A.; Viciu, M. S.;
Huang, J .; Nolan, S. P. J . Org. Chem. 2001, 66, 7729-7737.
(9) (a) Huang, J .; Stevens, E. D.; Nolan, S. P.; Peterson, J . L. J . Am.
Chem. Soc. 1999, 121, 2674-2678. (b) Huang, J .; Schanz, H. J .;
Stevens, E. D.; Nolan, S. P. Organometallics 1999, 18, 5375-5380. (c)
Scholl, M.; Trnka, T. M.; Morgan, J . P.; Grubbs, R. H. Tetrahedron
Lett. 1999, 40, 2247-2250. (d) Weskamp, T.; Schattenmann, W. C.;
Spiegler, M.; Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1998,
37, 2490-2493.
(10) (a) Lee, H. M.; Smith. D. C., J r.; He, Z.; Stevens, E. D.; Yi, C.;
Nolan, S. P. Organometallics 2001, 20, 794-797. (b) Lee, H. M.; J iang,
T.; Stevens, E. D.; Nolan, S. P. Organometallics 2001, 20, 1255-1258.
10.1021/jo010837s CCC: $22.00 © 2002 American Chemical Society
Published on Web 12/28/2001