Synthesis of L- and D-â-3′-Deoxy-3′,3′-difluoronucleosides
SCHEME 1
FIGURE 1. Some synthesized gem-difluoromethylenated nucleosides.
of inoperable pancreatic cancer and of 5-fluorouracial resistant
pancreatic cancer.
SCHEME 2 a
The high antiviral and antineoplastic activities of Gemcitabine
reveal the special influences of the CF2 group on biological
activities of nucleosides. Thus, a number of nucleosides
containing the CF2 group at the sugar moiety have been
synthesized and biologically evaluated. The nucleosides included
2′,3′-dideoxy-2′,2′-difluoronucleoside series 1,9 2′,3′-dideoxy-
3′,3′-difluoronucleoside series 2,10 2′-deoxy-2′,2′-difluoronucleo-
side series 3,8a,11 2′-deoxy-2′,2′-difluoroazanucleoside series 4,12
2′,3′-dideoxy-6′,6′-difluorocarbocyclic nucleoside series 5,13
2′,3′-dideoxy-6′,6′-difluoro-3′-thionucleoside series 6,14 2′,3′-
dideoxy-3′,3′-difluoro-6′-thionucleoside series 715 and 2′-deoxy-
2′,2′-difluoro-6′-thionucleoside series 8,16 and so forth (Figure
1). Recently, we synthesized N1-(3-deoxy-3,3-difluoro-â-D-
threo-arabinofuranosy)cytosine 14 and its R isomer 15 starting
from the key difluorohomoallyl alcohol 11 (Scheme 1).17 As
part of our ongoing and continual efforts to prepare fluorinated-
sugar nucleosides, it interests us to convert the R configuration
of the hydroxyl group at C2′ of compound 14 to S configuration
to obtain nucleosides 9 (Scheme 1). In addition, in view of the
fact that among some fluorinated nucleosides, L-isomers have
potent antiviral activity with no toxicity or less toxicity than
their D-counterparts,18 it was more significant to synthesize
L-isomers 10 of nucleosides 9. Herein, we described the
synthesis of the L- and D-â-3′-deoxy-3′,3′-difluoronucleosides
9 and 10 starting from difluorohomoallyl alcohol 11.
a Reagents and conditions: (a) NaH (0.8 equiv), BnBr, TBAI, THF; (b)
OsO4, NMNO, acetone/H2O; (c) BzCl, Py, CH2Cl2; (d) i. 75% AcOH, 50
°C; ii. NaIO4, acetone/H2O, room temperature; (e) Ac2O, DMAP, CH2Cl2.
Results and Discussion
The starting material difluorohomoallyl alcohol 11 was first
prepared from 1-(R)-glyceraldehyde acetonide and 3-bromo-
3,3-difluoropropene according to our recent report.17 Utilizing
the kinetic resolution method and optimized reaction condition,
we easily accomplished benzylation by treatment with sodium
hydride (0.8 equiv) and catalytic TBAI, followed by benzyl
bromide. The desired single anti-isomer was afforded in 78.5%
yield. Then, the Os-catalyzed dihydroxylation of the resulting
benzyl ether gave the mixture of diol compounds 16 and 17 in
95% yield and in 1:1 ratio (Scheme 2), which could be easily
separated by column chromatography. Selective benzoylation
of the primary hydroxyl group in diol 17 gave the benzoate 18
in 90% yield. The conversion of 18 to furanose 19 was achieved
in 94% yield by acidic hydrolysis with 75% acetic acid and
oxidation with sodium periodate, followed by subsequent
cyclization. The ratio of two diastereoisomers in compound 19
is 1:1 according to 19F NMR, and they could not be separated
on silica gel chromatography. O-Acetylation of furanose 19 with
Ac2O/DMAP/CH2Cl2 afforded the corresponding product in
94% yield, which was obtained nearly as single â anomer 20
(R/â ) 1:17) due to the assistance of neighboring large group
participation.17,19
(8) (a) Hertel, L. W.; Kroin, J. S.; Missner, J. W.; Tustin, J. M. J. Org.
Chem. 1988, 52, 2406-2409. (b) Plunkett, W.; Gandhi, V.; Chubb, C.;
Nowak, B.; Heinemann, V.; Mineishi, S.; Sen, A.; Hertel, L. W.; Grindey,
G. B. Nucleosides Nucleotides 1989, 8, 775-785. (c) Ruiz, V. W. T.;
Haperen, V.; Veerman, G.; Vermorken, J. B.; Peters, G. J. Biochem.
Pharmacol. 1993, 46, 762-766.
(9) Kotra, L. P.; Newton, M. G.; Chu, C. K. Carbohydr. Res. 1998, 306,
69-80.
(10) (a) Bergstrom, D.; Romo, E.; Shum, P. Nucleosides Nucleotides
1987, 6, 53-63. (b) Bergstrom, D. E.; Mott, A. W.; De Clercq, E.; Balzarini,
J.; Swartling, D. J. J. Med. Chem. 1992, 35, 3369-3372.
(11) Kotra, L. P.; Xiang, Y. J.; Newton, M. G.; Schinazi, R. F.; Cheng,
Y.-C.; Chu, C. K. J. Med. Chem. 1997, 40, 3635-3644.
(12) Evans, G. B.; Furneaux, R. H.; Lewandowicz, A.; Schramm, V. L.;
Tyler, P. C. J. Med. Chem. 2003, 46, 3412-3423.
(13) Yang, Y.-Y.; Meng, W.-D.; Qing, F.-L. Org. Lett. 2004, 6, 4257-
4259.
(14) Wu, Y.-Y.; Zhang, X.-G.; Meng, W.-D.; Qing, F.-L. Org. Lett. 2004,
6, 3941-3944.
(15) Zhu, W.; Chong, Y.; Choo, H.; Mathews, J.; Schinazi, R. F.; Chu,
C. K. J. Med. Chem. 2004, 47, 1631-1640.
(16) (a) Yoshimura, Y.; Kitano, K.; Satoh, H.; Watanabe, M.; Miura,
S.; Sakata, S.; Sasaki, T.; Matsuda, A. J. Org. Chem. 1996, 61, 822-823.-
(b) Yoshimura, Y.; Kitano, K.; Yamada, K.; Satoh, H.; Watanabe, M.;
Miura, S.; Sakata, S.; Sasaki, T.; Matsuda, A. J. Org. Chem. 1997, 62,
3140-3152. (c) Yoshimura, Y.; Kitano, K.; Watanabe, M.; Satoh, H.;
Sakata, S.; Miura, S.; Ashida, N.; Machida, H.; Matsudat, A. Nucleosides
Nucleotides 1997, 16, 1103-1106. (d) Jeong, L. S.; Moon, H. R.; Choi, Y.
J.; Chun, M. W.; Kim, H. O. J. Org. Chem. 1998, 63, 4821-4825.
(17) Zhang, X.-G.; Xia, H.-R.; Dong, X.-C.; Jin, J.; Meng, W.-D.; Qing,
F.-L. J. Org. Chem. 2003, 68, 9026-9033.
Vorbru¨ggen proposed that, for furanose substrate with an
acyloxy group in the C-2′ position, the glycosylation reaction
would involve the oxonium intermediate, which might induce
the attack of the silylated base from the contrary face of C-2′
acyloxy group.20 Thus, it is our assumption that conversion of
the benzyloxy group in acetate 20 into an acyloxy group would
(18) (a) Aerschot, A. V.; Herdewijn, P.; Balzarini, J.; Pauwels, R.; De
Clercq, E. J. Med. Chem. 1989, 32, 1743-1749. (b) Bergstrom, D. E.; Mott,
A. W.; De Clercq, E.; Balzarini, J.; Swartling, D. J. J. Med. Chem. 1992,
35, 3369-3372. (c) Zhu, W.; Chong, Y.; Choo, H.; Mathews, J.; Schinazi,
R. F.; Chu, C. K. J. Med. Chem. 2004, 47, 1631-1640.
(19) Zhang, X.-G.; Qing, F.-L.; Yu, Y.-H. J. Org. Chem. 2000, 65, 7075-
7082.
J. Org. Chem, Vol. 71, No. 7, 2006 2821