S. T. M. Simila et al. / Tetrahedron Letters 47 (2006) 2933–2936
2935
O
Ciufolini, M. A.; Peters, K.; Peters, E.-M. Tetrahedron
Lett. 1998, 39, 4667–4670; (k) Wardrop, D. J.; Zhang, W.
Org. Lett. 2001, 3, 2353–2356; (l) Brummond, K. M.; Lu,
J. Org. Lett. 2001, 3, 1347–1349; (m) Bonjoch, J.; Diaba,
OH
OH
PhI(OAc)2, TEMPO
O
CH2Cl2, rt
87%
N
N
Cbz
Cbz
´
´
´
F.; Puigbo, G.; Peidro, E.; Sole, D. Tetrahedron Lett.
2003, 44, 8387–8390; (n) Panchaud, P.; Ollivier, C.;
Renaud, P.; Zigmantas, S. J. Org. Chem. 2004, 69, 2755–
2759.
14
16
O
O
Pd/C, H2
NaOMe, MeOH
4. Houk, K. N.; Rondan, N. G.; Wu, Y.-D.; Metz, J. T.;
Paddon-Row, M. N. Tetrahedron 1984, 40, 2257–2274.
5. For a review, see: Deiters, A.; Martin, S. F. Chem. Rev.
2004, 104, 2199–2238, and references cited therein.
6. (a) Larsen, C. H.; Ridgway, B. H.; Shaw, J. T.; Woerpel,
K. A. J. Am. Chem. Soc. 1999, 121, 12208–12209; (b)
Smith, D. M.; Tran, M. B.; Woerpel, K. A. J. Am. Chem.
Soc. 2003, 125, 14149–14152; (c) Larsen, C. H.; Ridgway,
B. H.; Shaw, J. T.; Smith, D. M.; Woerpel, K. A. J. Am.
Chem. Soc. 2005, 127, 10879–10884.
70 C, MW (200W)
MeOH, rt
>99%
˚
N
H
45 min (3 cycles)
17
90%
9
AcO
HO
O
7
O
Ac2O, DMAP
N
N
Et3N, CH2Cl2, rt
90%
3
19
18
7. (a) Giovannini, A.; Savoia, D.; Umani-Ronchi, A. J. Org.
Chem. 1989, 54, 228–234; (b) Rudolph, A.; Machauer, R.;
Martin, S. F. Tetrahedron Lett. 2004, 45, 4895–4898.
8. Tehrani, K. A.; D’hooghe, M.; De Kimpe, N. Tetrahedron
2003, 59, 3099–3108.
9. The methyl ester was prepared by methylating (K2CO3,
MeI, DMF 82% yield) the corresponding acid that was
prepared according to a literature procedure: Armstrong,
R. J.; Weiler, L. Can. J. Chem. 1983, 61, 2530–2539.
10. The structure assigned to each compound was in accord
with its spectral (1H and 13C NMR, IR, MS) characteris-
tics. All yields are based on isolated, purified materials.
11. Yamaguchi, R.; Hatano, B.; Nakayasu, T.; Kozima, S.
Tetrahedron Lett. 1997, 38, 403–406.
12. For selected examples, see: (a) Fellows, I.; Kaelin, D. E.;
Martin, S. F. J. Am. Chem. Soc. 2000, 122, 10781–10787;
(b) Martin, S. F.; Humphrey, J. M.; Liao, Y.; Ali, A.;
Rein, T.; Wong, Y.-L.; Chen, H.-J.; Courtney, A. K. J.
Am. Chem. Soc. 2002, 124, 8584–8592; (c) Deiters, A.;
Martin, S. F. Org. Lett. 2002, 4, 3243–3245; (d) Neipp, C.
E.; Martin, S. F. J. Org. Chem. 2003, 68, 8867–8878; (e)
Washburn, D. G.; Heidebrecht, R. W., Jr.; Martin, S. F.
Org. Lett. 2003, 5, 3523–3525; (f) Brenneman, J. B.;
Machauer, R.; Martin, S. F. Tetrahedron 2004, 60, 7301–
7314; (g) Andrade, R. B.; Martin, S. F. Org. Lett. 2005, 7,
5733–5735; (h) Kummer, D. A.; Brenneman, J. B.; Martin,
S. F. Org. Lett. 2005, 7, 4621–4623.
Scheme 3.
In summary, we have developed a novel strategy to con-
struct the azatricyclic skeleton of the potent immuno-
suppressant FR901483 (1). The approach features an
addition of a functionalized allylsilane to an acyl imin-
ium ion to provide an intermediate that undergoes a
RCM to generate a spirocycle. Stereoselective hydro-
boration of the resultant olefin and a lactone–lactam
rearrangement then delivers the tricyclic core of 1.
Application of this strategy to an enantioselective syn-
thesis of 1 is in progress, and the results will be reported
in due course.
Acknowledgments
We thank the National Institutes of Health (GM 25439),
Pfizer, Inc., Merck Research Laboratories, and the Rob-
ert A. Welch Foundation for their generous support of
this research. We are also grateful to Dr. Richard Fisher
(Materia, Inc.) for catalyst support and to Dr. Scott Bur
for helpful discussions.
13. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett.
1999, 1, 953–956.
References and notes
14. For examples, see: (a) LaLonde, R. T.; Tobias, M. A. J.
Am. Chem. Soc. 1963, 85, 3771–3775; (b) Brown, H. C.;
Pfaffenberger, C. D. Tetrahedron 1975, 31, 925–928; (c)
Brown, H. C.; Liotta, R.; Brener, L. J. Am. Chem. Soc.
1977, 99, 3427–3432.
1. Sakamoto, K.; Tsujii, E.; Abe, F.; Nakanishi, T.;
Yamashita, M.; Shigematsu, N.; Izumi, S.; Okuhara, M.
J. Antibiot. 1996, 49, 37–44.
2. Snider, B. B.; Lin, H. J. Am. Chem. Soc. 1999, 121, 7778–
7786.
15. Kabalka, G. W.; Shoup, T. M.; Goudgaon, N. M. J. Org.
Chem. 1989, 54, 5930–5933.
3. For total syntheses of FR901483, see: (a) Scheffler, G.;
Seike, H.; Sorensen, E. J. Angew. Chem., Int. Ed. 2000, 39,
4593–4596; (b) Ousmer, M.; Braun, N. A.; Bavoux, C.;
Perrin, M.; Ciufolini, M. A. J. Am. Chem. Soc. 2001, 123,
7534–7538; (c) Ousmer, M.; Braun, N. A.; Ciufolini, M. A.
Org. Lett. 2001, 3, 765–767; (d) Maeng, J.-H.; Funk, R. L.
Org. Lett. 2001, 3, 1125–1128; (e) Kan, T.; Fujimoto, T.;
Ieda, S.; Asoh, Y.; Kitaoka, H.; Fukuyama, T. Org. Lett.
2004, 6, 2729–2731; (f) Brummond, K. M.; Hong, S. J.
Org. Chem. 2005, 70, 907–916; For approaches to
FR901438, see: (g) Quirante, J.; Escolano, C.; Massot,
M.; Bonjoch, J. Tetrahedron 1997, 53, 1391–1402; (h)
Yamazaki, N.; Suzuki, H.; Kibayashi, C. J. Org. Chem.
1997, 62, 8280–8281; (i) Snider, B. B.; Lin, H.; Foxman, B.
M. J. Org. Chem. 1998, 63, 6442–6443; (j) Braun, N. A.;
16. (a) De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.;
Piancatelli, G. J. Org. Chem. 1997, 62, 6974–6977; (b)
Hansen, T. M.; Florence, G. J.; Lugo-Mas, P.; Chen, J.;
Abrams, J. N.; Forsyth, C. J. Tetrahedron Lett. 2003, 44,
57–59.
17. Spectral data for 16: 1H NMR (CDCl3) d 7.36–7.27
(comp, 5H), 5.11 (d, J = 12.5 Hz, 1H), 5.06 (d,
J = 12.5 Hz, 1H), 3.91 (dt, J = 6.5, 11.0 Hz, 1H), 3.55–
3.47 (m, 2H), 2.77–2.72 (m, 1H), 2.51–2.44 (comp, 3H),
2.31–2.26 (m, 1H), 2.11–2.01 (m, 2H), 1.92–1.87 (m, 1H),
1.82–1.72 (comp, 3H), 1.62–1.58 (m, 1H), 1.39–1.33 (m,
1H); 13C NMR (CDCl3) d 176.7, 154.4, 136.7, 128.5,
128.0, 127.9, 82.9, 66.6, 62.5, 47.8, 43.9, 40.1, 38.2, 36.1,
31.2, 25.4, 21.6; IR (neat) m 2922, 1781, 1701, 1454, 1402,
1354, 1203, 1104, 1027 cmÀ1
.