2670
A. Battaglia et al. / Tetrahedron Letters 47 (2006) 2667–2670
Release 2000, 63, 141–153; (c) Hayashi, Y.; Skwarczynski, 17. Datta, A.; Hepperle, M.; Georg, G. I. J. Org. Chem. 1995,
M.; Hamada, Y.; Sohma, Y.; Kimura, T.; Kiso, Y. J.
Med. Chem. 2003, 46, 3782–3784; (d) Bradley, M. O.;
Webb, N. L.; Anthony, F. H.; Devanesan, P.; Witman, P.
A.; Hemamalini, S.; Chander, M. C.; Baker, S. D.; He, L.
F.; Horwitz, S. B.; Swindell, C. S. Clin. Cancer Res. 2001,
7, 3229–3238.
60, 761–776.
18. Grothaus, P. G.; Raybould, T. J. G.; Bignami, G. S.;
Lazo, C. B.; Byrnes, J. B. J. Immunol. Methods 1993, 158,
5–15.
19. (a) Neal, A. P.; Blagbrough, I. S. Abs. Pap. Am. Chem.
Soc. 2002, 224, 161-MEDI, Part 2; (b) Blagbrough, I. S.;
Geall, A. J.; Neal, A. P. Abs. Pap. Am. Chem. Soc. 2002,
224, 215-MEDI, part 2; (c) Blagbrough, I. S.; Geall, A. J.
Tetrahedron Lett. 1998, 39, 439–442.
4. These enzymes include the thiol protease Cathepsin B,
metalloproteinases such as collagenases and stromelysins,
and serine proteases like plasminogen activator and
plasmin. See: (a) Mai, J.; Waisman, D. M.; Sloane, B. F.
Biochim. Biophys. Acta 2000, 1477, 215–230; (b) Davidson,
A.; Drummond, A. H.; Galloway, W. A.; Whittaker, M.
Chem. Ind. 1997, 258–261; (c) Andreasen, P. A.; Egelund,
R.; Petersen, H. H. Cell. Mol. Life Sci. 2000, 57, 25–40.
5. De Groot, F. M. H.; Van Berkom, L. W. A.; Scheeren, H.
W. J. Med. Chem. 2000, 43, 3093–3102.
6. (a) Guillemard, V.; Saragovi, H. U. Cancer Res. 2001, 61,
694–699; (b) Jaime, J.; Page, M. Anticancer Res. 2001, 21,
1119–1128; (c) Ojima, I.; Geng, X.; Wu, X.; Qu, C.;
Borella, C. P.; Xie, H.; Wilhelm, S. D.; Leece, B. A.;
Bartle, L. M.; Goldmacher, V. S.; Chari, R. V. J. J. Med.
Chem. 2002, 45, 5620–5623.
7. (a) Cohen, S. S. A Guide to the Polyamines; Oxford
University Press: Oxford, 1998; (b) Tabor, C. W.; Tabor,
H. Annu. Rev. Biochem. 1984, 53, 749–790; (c) Pegg, A. E.
Cancer Res. 1988, 48, 759–774; (d) Blagbrough, I. S.;
Carrington, S.; Geall, A. J. Pharm. Sci. 1997, 3, 223–233;
(e) Igarashi, K.; Kashiwagi, K. Biochem. Biophys. Res.
2000, 271, 559–564; (f) Yoshida, M.; Kashiwagi, K.;
Shigemasa, A.; Taniguchi, S.; Kaneyoshi Yamamoto, K.;
Makinoshima, H.; Akira Ishihama, A.; Igarashi, K. J.
Biol. Chem. 2004, 279, 46008–46013.
20. Compound [1Æ2HF]. Compound 13 (0.31 g, 0.26 mmol)
was reacted with 1.2 equiv of Et3NÆ3HF in THF at 20 °C
for 15 h. The solvent was evaporated and the residue was
washed with Et2O and recrystallized to afford 0.21 g
(0.19 mmol, 73%) of compound 1 as the difluoride salt: 1H
NMR (400 MHz, D2O, 60 °C): d 8.06 (m, 2H), 7.80–7.77
(m, 3H), 7.70–7.40 (m, 10H), 7.46–7.40 (br, 1H,
J = 9.0 Hz, NH), 6.36 (s, 1H, H10), 6.07 (t, 1H,
J = 9.0 Hz, H13), 5.56 (d, 1H, J = 7.0 Hz, H30), 5.47 (d,
1H, J = 6.8 Hz, H2), 5.30 (m, 1H, H7), 5.10 (m, 1H,
J1 = 9.5 Hz, J2 = 2.0 Hz, H5), 4.87 (d, 1H, H20), 4.36 (d,
1H, J = 8.2 Hz, H20), 4.22 (d, 1H, H020), 3.79 (d, 1H,
H3), 3.30–3.00 (m, 14H, 7 CH2), 2.55–2.45 (m, 1H, H6),
2.35 (s, 3H, Me), 2.20 (s, 3H, Me), 2.10–1.90 (m, 3H, H14,
H140, and H60), 1.90–1.60 (m, 12H, 2Me, 3CH2), 1.14 (s,
3H, Me), 1.10 (s, 3H, Me). 13C NMR (100 MHz, D2O) d
206.1, 174.0, 173.1, 172.0, 171.3, 167.6, 157.0, 141.1, 137.1,
134.7, 133.5, 132.9, 132.5, 130.1, 129.3, 129.1, 129.0, 128.9,
128.8, 127.4, 127.2, 84.0, 80.6, 78.4, 76.5, 75.7, 74.7, 73.6,
72.5, 71.4, 57.4, 56.3, 47.2, 47.0, 45.3, 44.7, 43.0, 37.7, 36.7,
34.8, 32.7, 25.9, 25.6, 24.0, 23.0, 22.5, 21.1, 20.3, 13.8, 10.6.
ESI-MS m/z 542 [(1+2H+)/2]+.
21. Compound [2Æ2HF]. Compound 13 (0.47 g, 0.40 mmol)
was reacted with 1.2 equiv of Et3NÆ3HF in THF at 20 °C
for 15 h. The solvent was evaporated and the residue was
washed with Et2O, then recrystallized from THF/Et2O to
afford 0.29 g (0.27 mmol, 66%) of compound 2 as the
difluoride salt: 1H NMR (400 MHz, CDCl3, 60 °C): d 8.18
(m, 2H), 7.92 (m, 3H), 7.80–7.72 (m, 2H), 7.75–7.68 (m,
1H), 7.65–7.50 (m, 7H), 7.40–7.33 (br, 1H, NH), 6.31 (s,
1H, H10), 6.14 (t, 1H, J = 9.0 Hz, H13), 5.63 (d, 1H,
J = 6.5 Hz, H30), 5.54 (d, 1H, J = 6.5 Hz, H2), 5.19 (d,
1H, J = 9.7 Hz, H7), 4.91 (m, 1H, J1 = 9.0 Hz,
J2 = 1.5 Hz, H5), 4.75 (m, 1H, H20), 4.16 (d, 1H,
J = 8.0 Hz, H20), 4.04 (d, 1H, H20), 3.55 (d, 1H,
J = 7.0 Hz, H3), 3.10–2.90 (m, 14H, 7 CH2), 2.68–2.60
(m, 1H, H6), 2.41 (s, 3H, Me), 2.24–21.10 (m, 3H, H14,
H140, and H60), 2.0–1.70 (m, 12H, 2Me, 3CH2), 1.22 (s,
3H, Me), 1.18 (s, 3H, Me); 13C NMR (100 MHz, D2O) d
204.5, 174.2, 173.0, 171.3, 167.7, 156.9, 140.8, 137.0, 134.6,
133.4, 133.3. 132.5, 130.1, 129.3, 129.1, 129.0, 128.9, 128.8,
127.4, 127.2, 84.6, 80.9, 78.4, 76.5, 76.4, 75.0, 73.6, 71.4,
71.0, 68.0, 57.9, 57.4, 47.1, 47.0, 45.1, 44.6, 43.0, 39.7, 37.4,
36.6, 35.5, 26.1, 25.1, 23.9, 22.9, 22.8, 22.5, 21.1, 13.8, 9.7.
ESI-MS m/z 521 [(2+2H+)/2]+.
8. See for example: (a) Ito, K.; Kashiwagi, K.; Watanabe, S.;
Kameji, T.; Hayashi, S.; Igarashi, K. J. Biol. Chem. 1990,
265, 13036–13041; (b) Kashiwagi, K.; Yamaguchi, Y.;
Sakai, Y.; Kobayashi, H.; Igarashi, K. J. Biol. Chem.
1990, 265, 8387–8391.
9. Only recent results reveal a physiological function of
TATA-binding protein-associated factor 7 (TAF7) as a
regulator for mammalian polyamine transport. See: Juni-
chi Fukuchi, J.; Hiipakka, R. A.; Kokontis, J. M.;
Nishimura, K.; Igarashi, K.; Liao, S. J. Biol. Chem.
2004, 279, 29921–29929, and references cited therein.
10. (a) Vassylyev, D. G.; Tomitori, H.; Kashiwagi, K.;
Morikawa, K.; Igarashi, K. J. Biol. Chem. 1998, 273,
17604–17609; (b) Gardner, R. A.; Delcros, J.-G.; Konate,
F., ; Breitbeil, F., III; Martin, B.; Sigman, M.; Huang, M.;
Phanstiel, O. J. Med. Chem. 2004, 47, 6055–6069.
11. Burns, M. R.; Carlson, C. L.; Vanderwerf, S. M.; Ziemer,
J. R.; Weeks, R. S.; Cai, F.; Webb, H. K.; Graminski, G.
F. J. Med. Chem. 2001, 44, 3632–3644.
12. Siddiqui, A. Q.; Merson-Davies, L.; Cullis, P. M. J. Chem.
Soc., Perkin Trans. 1 1999, 3243–3252.
13. Jakobs, A.; Bernadou, J.; Meunier, B. J. Org. Chem. 1997,
62, 3505–3510.
14. (a) Rauter, H.; Di Domenico, R.; Menta, E.; Oliva, O.;
Qu, Y.; Farrell, N. Inorg. Chem. 1997, 36, 3919–3927; (b)
22. Ojima, I.; Fenoglio, I.; Park, Y. H.; Pera, P.; Bernacki, R.
J. Bioorg. Med. Chem. Lett. 1994, 37, 1408.
23. As an example, the carboxylesterases metabolize the
carbamate prodrug 7-ethyl-10-[4-(1-piperidino)-1-piperi-
dino] carbonyloxycamptothecin (CPT-11; irinotecan) to
its active metabolite 7-ethyl-10-hydroxycamptothecin
(SN-38), a potent topoisomerase I inhibitor. See: (a)
Sanghani, S. P.; Quinney, S. K.; Fredenburg, T. B.; Davis,
W. I.; Murry, D. J.; Bosron, W. F. Drug Metab. Dispos.
2004, 32, 505–511; (b) Slatter, J. G.; Su, P.; Sams, J. P.;
Schaaf, L. J.; Wienkers, L. C. Drug Metab. Dispos. 1997,
25, 1157–1164.
´
´
Amo-Ochoa, P.; Gonzalez, V. M.; Perez, J. M.; Masaguer,
J. R.; Alonso, C.; Navarro-Ranninger, C. J. Inorg.
Biochem. 1996, 64, 287–299.
15. De Groot, F. M. H.; Van Berkom, L. W. A.; Scheeren, H.
W. J. Med. Chem. 2000, 43, 3093–3102.
16. Altstadt, T. J.; Fairchild, C. R.; Golik, J.; Johnston, A. K.;
Kadow, J. F.; Lee, F. Y.; Long, B. H.; Rose, W. C.; Vyas,
D. M.; Wong, H.; Wu, M.-J.; Wittman, M. D. J. Med.
Chem. 2001, 44, 4577–4583.