G. Reeske, M. Schürmann, B. Costisella, K. Jurkschat
FULL PAPER
CH2], 3.12 [t, 3J(1H-1H) = 7.8, 3J(1H-117/119Sn) = 102.4 Hz, 2 H, Complex [nBu4N][5·SNC]: 119Sn{1H} NMR (149.2 MHz, CD2Cl2,
CH2–Ar], 3.55–4.00 (m, 16 H, CH2O), 6.65–6.90 (m, 3 H, Ar), 203 K): δ = 308 (3%), –252 (97%) ppm.
7.29–7.64 (m, 10 H, Sn–Ph) ppm. 13C{1H} NMR (150.84 MHz,
Complex [(Ph3P)2N][5·Cl]: 119Sn{1H} NMR (149.2 MHz, CD2Cl2,
CD2Cl2, 300 K): δ = 23.3 (Sn–CH2), 31.6 [2J(13C-117/119Sn) =
203 K): δ = –250 (19%), –214 (64%), –197 (17%) ppm.
28 Hz, CH2–Ar], 66.6–68.7 (CH2O), 113.1 [C(19)/C(3)], 120.8
Complex 4·NaSCN: 1H NMR (400.1 MHz, CD2Cl2, 300 K): δ =
[C(1)], 128.6 [3J(13C-117/119Sn) = 64 Hz, SnPh2 C(m)], 129.3 [SnPh2
C(p)], 135.4 [SCN, determined by HMBC experiment], 136.4
[2J(13C-117/119Sn) = 46 Hz, SnPh2 C(o)], 138.2 [SnPh2 C(i)], 138.4
[C(2)], 141.9 [C(18)], 145.6 [C(4)] ppm. 119Sn{1H} NMR
(111.9 MHz, CDCl3): δ = –180 (ν1/2 = 1930 Hz) ppm.
2
1.96 [t, 3J(1H-1H) = 8.3, J(1H-119/117Sn) = 66.0 Hz, 2 H, Sn–CH2],
3
3.10 [t, 3J(1H-1H) = 8.0, J(1H-117/119Sn) = 84.8 Hz, 2 H, CH2–Ar],
3.47–3.60 [m, 8 H, H(9)–H(13)], 3.61–3.70 [m, 4 H, H(7), H(15)],
3.80–3.92 [m, 4 H, H(6), H(16)], 6.61–6.80 (m, 3 H, Ar), 7.30–
7.79 (m, 10 H, Sn–Ph) ppm. 13C{1H} NMR (150.84 MHz, CD2Cl2,
Sodium Rhodanide Complex 2a: The triorganotin chloride 2 (1 g,
1.55 mmol) and NaSCN (0.170 g, 1.55 mmol) were dissolved in
ethanol (5 mL) and the mixture was heated at reflux for 1 h. The
reaction mixture was cooled to room temperature providing 700 mg
(62%) of 2a as colorless crystals. 1H NMR (400.1 MHz, CDCl3,
1
300 K): δ = 24.8 [1J(13C-117Sn) = 595, J(13C-119Sn) = 621 Hz, Sn–
CH2], 31.5 [2J(13C-117/119Sn) = 32 Hz, CH2–Ar], 67.2–69.2 [C(6)–
C(16)], 113.5 [C(19)], 113.6 [C(3)], 121.8 [C(1)], 128.3 [3J(13C-
117/119Sn) = 66 Hz, Sn–Ph, C(m)], 129.1 [4J(13C-117/119Sn) = 13 Hz,
Sn–Ph C(p)], 135.6 [N=C=S, 2J(13C-117/119Sn) = 59 Hz], 136.5
[2J(13C-117/119Sn) = 45 Hz, Sn–Ph C(o)], 139.2 [3J(13C-117/119Sn) =
68 Hz, C(2)], 142.7 [1J(13C-117Sn) = 716, 1J(13C-119Sn) = 751 Hz,
Sn–Ph C(i)], 144.9 [C(18)], 146.7 [C(4)] ppm. 119Sn{1H} NMR
(149.2 MHz, CD2Cl2, 298 K): δ = –225 (ν1/2 = 2013 Hz) ppm.
3
2
300 K): δ = 1.77 [t, J(1H-1H) = 8.28, J(1H-117/119Sn) = 52.2 Hz, 2
H, SnCH2], 2.93 [t, 3J(1H-1H) = 8.28, J(1H-117/119Sn) = 56.5 Hz, 2
3
H, CH2–Ar], 3.71 (m, 4 H, OCH2), 3.79 (m, 4 H, OCH2), 3.86 (m,
2 H, OCH2), 3.93 (m, 4 H, OCH2), 4.11 (m, 2 H, OCH2), 6.58 [s,
1 H, H(3)], 6.70 [s, 2 H, H(1), H(19)], 7.43–7.33 (m, 15 H, Sn–Ph)
ppm. 13C{1H} NMR (100.6 MHz, CDCl3 300 K): δ = 13.0 (Sn–
CH2), 31.8 (CH2–Ar), 69.0–66.5 [C(6)–C(16)], 112.3 [C(19)], 112.4
[C(3)], 121.0 [C(1)], 128.4 [3J(13C-117/119Sn) = 49 Hz, Sn–Ph C(m)],
128.8 [4J(13C-117/119Sn) = 11 Hz, Sn–Ph C(p)], 136.8 [2J(13C-
117/119Sn) = 35 Hz, Sn–Ph C(o)], 138.5 [C(2)], 138.7 [Sn–Ph C(i)],
144.6 [C(4)], 146.3 [C(18)] ppm. 119Sn{1H} NMR (149.2 MHz,
CDCl3): δ = –104 ppm. C35H38NNaO5SSn (726.45): calcd. C 57.7,
H 5.3, N 1.9; found C 58.0, H 5.3, N 1.9.
119Sn{1H} NMR (149.2 MHz, CD2Cl2, 203 K): δ = –248 (ν1/2
=
937 Hz) ppm. ESMS (+p): m/z = 650.1 [Ph2Sn(SCN) – C16H23O5]·
Na+. ESMS (–p): m/z = 685.1 [Ph2Sn(SCN)2 – C16H23O5]–, 766.2
[Ph2Sn(SCN)2 – C16H23O5·NaSCN]–.
Acknowledgments
We are grateful to the Deutsche Forschungsgemeinschaft and the
Fonds der Chemischen Industrie for financial support.
Complex [4·Na][BPh4]: 1H NMR (400.1 MHz, CDCl3/CD3CN, 4:1,
3
2
300 K): δ = 2.08 [t, J(1H-1H) = 7.9, J(1H-117/119Sn) = 56.8 Hz, 2
H, Sn–CH2], 3.12 [t, 3J(1H-1H) = 7.8, J(1H-117/119Sn) = 52.0 Hz, 2
3
[1] P. A. Gale, Coord. Chem. Rev. 2003, 240, 191.
[2] G. J. Kirkovits, J. A. Shriver, P. A. Gale, J. L. Sessler, J. In-
clusion Phenom. Macrocyclic Chem. 2001, 41, 69.
[3] H. Tsukube, M. Wada, S. Shinoda, H. Tamiaki, Chem. Com-
mun. 1999, 1007.
H, CH2–Ar], 3.58–3.67 [m, 8 H, H(9)–H(13)], 3.68–3.77 [m, 2 H,
H(7)], 3.78–3.82 [m, 2 H, H(15)], 3.88–3.92 [m, 2 H, H(6)], 3.98–
–
4.04 [m, 2 H, H(16)], 6.76–6.80 (m, 3 H, Ar), 6.87 (m, BPh4 ), 7.02
3
–
[t, J(1H-1H) = 7.2 Hz, BPh4 ], 7.37–7.60 (m, 10 H, Sn–Ph) ppm.
13C{1H} NMR (100.63 MHz, CDCl3/CD3CN, 4:1, 300 K): δ = 20.5
(Sn–CH2), 30.3 (CH2–Ar), 66.3 [C(6)], 66.7 [C(16)], 67.2 [C(7)],
67.3 [C(15)], 67.8–68.1 [C(9)–C(13)], 112.9 [C(19)], 113.1 [C(3)],
[4] M. A. Hossain, H. J. Schneider, J. Am. Chem. Soc. 1998, 120,
11208.
[5] A. V. Koulov, J. M. Mahoney, B. D. Smith, Org. Biomol. Chem.
2003, 1, 27.
–
–
–
116.3 (BPh4 ), 121.1 [C(1)], 121.3 (BPh4 ), 124.1 (BPh4 ), 128.2
[3J(13C-117/119Sn) = 59 Hz, Sn–Ph, C(m)], 129.3 [4J(13C-117/119Sn) =
14 Hz, Sn–Ph C(p)], 135.2 [2J(13C-117/119Sn) = 43 Hz, Sn–Ph C(o)],
[6] D. T. Rosa, V. G. Young, D. Coucouvanis, Inorg. Chem. 1998,
37, 5042.
[7] S. Kubik, R. Goddard, J. Org. Chem. 1999, 64, 9475.
[8] B. R. Cameron, S. J. Loeb, Chem. Commun. 1997, 573.
[9] K. Tanigaki, T. Sato, Y. Tanaka, T. Ochi, A. Nishikawa, K.
Nagai, H. Kawashima, S. Ohkuma, FEBS Lett. 2002, 524, 37.
[10] D. M. Rudkevich, J. D. Mercerchalmers, W. Verboom, R. Un-
garo, F. Dejong, D. N. Reinhoudt, J. Am. Chem. Soc. 1995,
117, 6124.
[11] M. A. S. Hossain, H. J. Schneider, Chem. Eur. J. 1999, 5, 1284.
[12] J. M. Mahoney, A. M. Beatty, B. D. Smith, J. Am. Chem. Soc.
2001, 123, 5847.
[13] D. J. White, N. Laing, H. Miller, S. Parsons, S. Coles, P. A.
Tasker, Chem. Commun. 1999, 2077.
[14] A. J. Evans, P. D. Beer, Dalton Trans. 2003, 4451.
[15] P. R. A. Webber, P. D. Beer, Dalton Trans. 2003, 2249.
–
135.4 (BPh4 ), 137.5 [C(2)], 139.2 [Sn–Ph C(i)], 144.6 [C(18)], 146.1
[C(4)], 162.7–164.2 (q, BPh4 ) ppm. 119Sn{1H} NMR (149.2 MHz,
–
CDCl3/CD3CN, 4:1, 300 K): δ = –9 ppm.
1
Complex [nBu4N][4·SCN]: H NMR (400.1 MHz, CD2Cl2, 300 K):
3
3
δ = 0.93 [t, J(1H-1H) = 8 Hz, 12 H, nBu4N+ CH3], 1.29 [q, J(1H-
1H) = 7.3 Hz, 8 H, nBu4N+ CH2], 1.45 (m, 8 H, nBu4N+ CH2),
1.91 [t, 3J(1H-1H) = 8.8, J(1H-117/119Sn) = 74.8 Hz, 2 H, Sn–CH2],
2
2.93 (m, 8 H, nBu4N+ N–CH2), 3.0 [t, 3J(1H-1H) = 8.8, 3J(1H-
117/119Sn) = 52.3 Hz, 2 H, CH2–Ar], 3.65 [s, 8 H, H(9)–H(13)], 3.75–
3.84 [m, 4 H, H(7) H(15)], 3.98–4.05 [m, 4 H, H(6) H(15)], 6.72–
6.84 (m, 3 H, Ar), 7.25–7.40 [m, 6 H, Sn–Ph H(m), H(p)], 7.84–
8.20 [m, 3J(1H-117/119Sn) = 30.6 Hz, 4 H, Sn–Ph H(o)]. 13C{1H} [16] M. T. Blanda, J. Frels, J. Lewicki, Supramol. Chem. 1998, 9,
NMR (100.63 MHz, CD2Cl2, 300 K): δ = 13.3 (nBu4N+), 19.5
(nBu4N+), 23.6 (nBu4N+), 31.5 (CH2–Ar), 58.5 (nBu4N+), 68.4
[C(6)], 69.0 [C(16)], 69.3 [C(7)], 69.4 [C(15)], 70.1–70.5 [C(9)–
C(13)], 113.9 [C(19)], 114.1 [C(3)], 120.2 [C(1)], 127.6 [3J(13C-
117/119Sn) = 64 Hz, Sn–Ph, C(m)], 128.1 [Sn–Ph C(p)], 136.7 [2J(13C-
117/119Sn) = 47 Hz, Sn–Ph C(o)], 138.9 [C(2)], 146.8 [C(18)], 148.8
[C(4)] ppm. 119Sn{1H} NMR (149.2 MHz, CD2Cl2, 300 K): no res-
onance found. 119Sn{1H} NMR (149.2 MHz, CD2Cl2, 208 K): δ
= –253 (13%), –217 (69%), –198 (18%) ppm.
255.
[17] M. T. Blanda, M. A. Herren, Chem. Commun. 2000, 343.
[18] a) M. T. Reetz, C. Niemeyer, K. Harms, Angew. Chem. 1991,
103, 1515; Angew. Chem. Int. Ed. Engl. 1991, 30, 1472; b) M.
Kemmer, M. Biesemans, M. Gielen, J. C. Martins, V. Gramlich,
R. Willem, Chem. Eur. J. 2001, 7, 4686.
[19] T. Sakurai, Y. Takeuchi, Appl. Organomet. Chem. 2004, 18, 23.
[20] T. Sakurai, Y. Takeuchi, Heteroatom Chem. 2003, 14, 365.
[21] M. Schulte, G. Gabriele, M. Schürmann, K. Jurkschat, D.
Dakternieks, A. Duthie, Organometallics 2003, 22, 328.
2886
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2005, 2881–2887