J.S. Pap et al. / Journal of Inorganic Biochemistry 108 (2012) 15–21
21
Scheme 4. General mechanism proposal for the catalytic dioxygenation of the various substrates.
[18] B. Gopal, L.L. Madan, S.F. Betz, A.A. Kossiakoff, Biochemistry 44 (2005) 193.
[19] B.M. Barney, M.R. Schaab, R. LoBrutto, W.A. Francisco, Protein Expr. Purif. 35 (2004)
131.
[20] L. Bowater, S.A. Fairhurst, V.J. Just, S. Bornemann, FEBS Lett. 557 (2004) 45.
[21] R. Qi, S. Fetzner, A.J. Oakley, Acta Crystallogr, Sect. F. 63 (2007) 378.
[22] R.A. Steiner, U. Frerichs-Deeken, S. Fetzner, acta Crystallogr, Sect. F. 63 (2007) 382.
[23] S. Fetzner, Appl. Microbiol. Biotechnol. 60 (2002) 243.
[24] F. Fischer, S. Fetzner, FEMS Microbiol. Lett. 190 (2000) 21.
[25] U. Frerichs-Deeken, K. Ranguelova, R. Kappl, J. Hüttermann, S. Fetzner, Biochem-
istry 43 (2004) 14485.
Researches in the fields of motor vehicle industry, energetics and
environment in the Middle- and West-Transdanubian Regions of
Hungary. The project is supported by the European Union and
co-financed by the European Regional Development Fund. Financial
support of the Hungarian National Research Fund (OTKA K67871,
K75783 and PD75360) is also gratefully acknowledged.
Appendix A. Supplementary material
[26] É. Balogh-Hergovich, J. Kaizer, G. Speier, G. Argay, L. Párkányi, J. Chem. Soc. Dalton
Trans. (1999) 3847.
[27] É. Balogh-Hergovich, J. Kaizer, G. Speier, G. Huttner, A. Jacobi, Inorg. Chem. 39
(2000) 4224.
[28] J. Kaizer, É. Balogh-Hergovich, M. Czaun, T. Csay, G. Speier, Coord. Chem. Rev. 250
(2006) 2222.
Supplementary data to this article can be found online at doi:10.
1016/j.jinorgbio.2011.11.013.
[29] J. Kaizer, G. Baráth, J. Pap, G. Speier, M. Giorgi, M. Réglier, Chem. Commun. (2007) 5235.
[30] J.S. Pap, J. Kaizer, G. Speier, Coord. Chem. Rev. 254 (2010) 781.
[31] L. Barhács, J. Kaizer, G. Speier, J. Org. Chem. 65 (2000) 3449.
[32] G. Baráth, J. Kaizer, G. Speier, L. Párkányi, E. Kuzmann, A. Vértes, Chem. Commun.
(2009) 3630.
[33] M. Czaun, G. Speier, Tetrahedron Lett. 43 (2002) 5961.
[34] A. Nishinaga, T. Tojo, H. Tomita, T.J. Matsuura, J. Chem. Soc. Perkin Trans. 1 (1979) 2511.
[35] M.A. Smith, R.M. Newman, R.A. Webb, J. Heterocycl. Chem. 5 (1968) 425.
[36] P. Hradil, J. Jirman, Collect. Czech. Chem. Commun. 60 (1995) 1357.
[37] F. Arndt, Organic Syntheses, in: A.H. Blatt (Ed.), John Wiley & Sons, New York,
1943, p. 165.
[38] The Manipulation of Air-Sensitive Compounds, in: D.F. Shriver, M.A. Drezdzon
(Eds.), John Wiley & Sons, New York, 1986.
[39] E.G. Samsel, K. Srinivasan, J.K. Kochi, J. Am. Chem. Soc. 107 (1985) 7606.
[40] G.M. Sheldrick, SHELXL97, Program for the Refinement of Crystal Structures,
Univ. of Göttingen, Germany, 1997.
References
[1] E. Wollenweber, in: J.B. Harborne, T.J. Mabry (Eds.), Flavonoids: Advances in
Research, Chapman & Hall, London, New York, 1982, p. 189.
[2] J.B. Harborne, C.A. Williams, in: J.B. Harborne, T.J. Mabry (Eds.), Flavonoids: Advances
in Research, Chapman & Hall, London, New York, 1982, p. 261.
[3] W. Bors, W. Hellers, C. Michel, Meth. Enzymol. 186 (1990) 343.
[4] Y. Hanasaki, S. Ogawa, S. Fukui, J. Free Radic. Biol. Med. 16 (1992) 605.
[5] J.P. Hu, M. Calomme, A. Lasure, T. De Bryune, L. Pieters, A. Vlietnick, D.D.A. Van
den Berghe, Biol. Trace Elem. Res. 47 (1995) 327.
[6] C.A. Rice-Evans, N.J. Miller, G. Pananga, J. Free Radic. Biol. Med. 20 (1996) 933.
[7] A. Gulsen, D.P. Makris, P. Kefalas, Food Res. Int. 40 (2007) 7.
[8] M.G.L. Hertog, E.J.M. Feskens, P.C.H. Hollman, M.B. Katan, D. Kromhout, Lancet
342 (1993) 1007.
[9] H.-K. Hund, A. de Beyer, F. Lingens, Biol. Chem. Hoppe Seyler 371 (1990) 1005.
[10] G. Bott, M. Schmidt, T.O. Rommel, F. Lingens, Biol. Chem. Hoppe Seyler 371 (1990) 999.
[11] S. Fetzner, R.A. Steiner, Appl. Microbiol. Biotechnol. 86 (2010) 791.
[12] E.C. Pesci, J.B.J. Milbank, J.P. Pearson, S. McKnight, A.S. Kende, E.P. Greenberg, B.H.
Iglewski, Proc. Natl Acad. Sci. USA 96 (1999) 11234.
[13] S.P. Diggle, P. Cornelis, P. Williams, M. Camara, Int. J. Med. Microbiol. 296 (2006) 83.
[14] J.F. Dubern, S.P. Diggle, Mol. Biosyst. 4 (2008) 882.
[15] T. Oka, F.J. Simpson, Biochem. Biophys. Res. Commun. 43 (1971) 1.
[16] H.-K. Hund, J. Breuer, F. Lingens, J. Hüttermann, R. Kappl, S. Fetzner, Eur. J. Biochem.
263 (1999) 871.
[41] A. Kruis, Landolt-Börnstein, Board 4, Teil 4, Springer-Verlag, Berlin, 1976, p. 269.
[42] G. Ram, A.R. Sharaf, J. Ind. Chem. Soc. 45 (1968) 13.
[43] J. Kaizer, S. Góger, G. Speier, M. Réglier, M. Giorgi, Inorg. Chem. 9 (2006) 251.
[44] J. Kaizer, T. Csay, M. Czaun, G. Speier, M. Réglier, M. Giorgi, Inorg. Chem. 8 (2005) 813.
[45] B.H.J. Bielski, H.W. Richter, J. Am. Chem. Soc. 99 (1977) 8085.
[46] J. Kaizer, I. Ganszky, G. Speier, A. Rockenbauer, L. Korecz, M. Giorgi, M. Réglier, S.
Antonczak, J. Inorg. Biochem. 101 (2007) 893–899.
[47] I. Ganszky, J. Kaizer, M. Czaun, G. Speier, L. Párkányi, Z. Kristallogr, NCS 222
(2007) 259–260.
[17] F. Fusetti, K.H. Schröter, R.A. Steiner, P.I. van Nort, T. Pijning, H.J. Rozeboom, K.H.
Kalk, M.R. Egmond, B.W. Dijkstra, Structure 10 (2002) 259.