example was presented in which a BOC-protected 3-oxo-2-
phosphonopyrrolidine was converted to the corresponding
3-hydroxy-2-phosphonopyrrole by treatment with trifluoroacetic
acid.7 On the other hand, addition of enolates and enamines to
phosphonoazoalkenes8 or addition of cyano methylphosphonate
anion to azoalkenes9 was shown to lead to 3-phosphonopyrroles.
Finally, only one example of a meta-mediated ring closure
between an alkyne and a C-N double bond using Pd has been
reported.10 However, since the discovery and development of
practical useful ruthenium-based metathesis catalysts in the past
decennium,11 ring-closing metathesis (RCM) has found wide
application in the synthesis of complex (hetero)cyclic com-
pounds.12 Furthermore, an increasing interest exists in combining
ring-closing metathesis with a second reaction step in order to
obtain complex, highly functionalized molecules in a one-pot
reaction.13 The use of RCM to form heteroaromatic compounds,
however, has only recently appeared in the literature.14 In this
paper, we present the synthesis of N-benzyl-2-phosphono-3-
pyrrolines via RCM starting from functionalized R-aminoalkenyl
phosphonates and their in situ conversion to the corresponding
2-phosphonopyrroles by tetrachloroquinone (TCQ).
Synthesis of 2-Phosphonopyrroles via a One-Pot
RCM/Oxidation Sequence
Kristof Moonen, Nicolai Dieltiens, and Christian V. Stevens*
Research Group SynBioC, Department of Organic Chemistry,
Faculty of Bioscience Engineering, Ghent UniVersity,
Coupure links 653, B-9000 Ghent, Belgium
ReceiVed January 24, 2006
R,â-Unsaturated N-allylaldimines 1 are phosphonylated with
complete regioselectivity15 using a modified Pudovik reaction
(4) (a) Ivonin, S. P.; Tolmachev, A. A.; Terikovska, T. E.; Anischchenko,
A. A.; Chaikovskaya, A. A., Pinchuk, A. M. Heteroatom Chem. 2003, 14,
258. (b) Quin, L. D.; Marsi, B. G. J. Am. Chem. Soc. 1985, 107, 3389. (c)
Griffin, C. E.; Peller, R. P.; Peters, J. A. J. Org. Chem. 1965, 30, 91.
(5) (a) Kamijo, S.; Kanazawa, C.; Yamamoto, Y. J. Am. Chem. Soc.
2005, 127, 9263. (b) Kamijo, S.; Kanazawa, C.; Yamamoto, Y. Tetrahedron
Lett. 2005, 46, 2563. (c) Berre´e, F.; Marchand, E. Morel, G. Tetrahedron
Lett. 1992, 33, 6155.
(6) (a) Huang, W.-S.; Zhang, Y.-X.; Yuan, C. J. Chem. Soc., Perkin
Trans. 1 1996, 1893. (b) Ngwe, H.; Kinoshita, H.; Inomata, K. Bull. Chem.
Soc. Jpn. 1994, 67, 3320. (c) Yuan, C.; Huang, W. Synthesis 1993, 473.
(7) Davis, F. A.; Wu, Y.; Xu, H.; Zhang, J. Org. Lett. 2004, 6, 4523.
(8) (a) Palacios, F.; Aparicio, D.; de los Santos, J. Tetrahedron 1999,
55, 13767. (b) Haelters, J.-P.; Corbel, B.; Sturtz, G. Phosphorus, Sulfur,
Silicon Relat. Elem. 1989, 44, 53.
A four-step synthesis of 2-phosphonopyrroles is presented
starting from suitable aldehydes. The key step in the synthesis
involves a one-pot ring-closing metathesis/oxidation sequence
of a functionalized R-aminoalkenyl phosphonate. Notwith-
standing the presence of a nucleophilic nitrogen atom and
high substitution patterns in the substrate, the results of the
RCM reaction are excellent using mild reaction conditions.
Furthermore, a synergism is observed between the RCM
catalyst and the oxidizing agent, causing higher oxidation
rates and allowing reaction for substrates that normally fail
to ring close under standard RCM conditions.
(9) Attanasi, O. A.; De Crescentini, L.; Foresti, E.; Gatti, G.; Giorgi, R.;
Perrulli, F. R.; Santeusanio, S. J. Chem. Soc., Perkin Trans. 1 1997, 1829.
(10) Palacios, F.; Aparicio, D.; de los Santos, J. M.; Vicario, J.
Tetrahedron 2001, 57, 1961.
(11) For reviews concerning recent developments in design of ruthenium
metathesis catalysts, see: (a) Dragutan, I.; Dragutan, V.; Filip, P. ArkiVoc,
2005, x, 105. (b) Fu¨rstner, A. Angew. Chem., Int. Ed. 2000, 39, 3013.
(12) (a) Nicolau, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int.
Ed. 2005, 44, 4490. (b) Nakamura, I.; Yamamoto, Y. Chem. ReV. 2004,
104, 2127. (c) Phillips, A. J.; Abell, A. D. Aldrichim. Acta 1999, 32, 75.
(d) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413. For a recent
review on the use of RCM for the synthesis of nitrogen-containing
heterocycles, see: (e) Deiters, A.; Martin, S. F. Chem. ReV. 2004, 104,
2199.
(13) (a) van Otterlo, W. A. L.; Coyanis, E.; Mabel, E.; Panayides, J.-L.;
de Koning, C. B.; Fernandes, M. A. Synlett 2005, 501. (b) van Otterlo, W.
A. L.; Morgans, G. L.; Madeley, L. G.; Kuzvidza, S.; Moleele, S. S.;
Thornton, N.; de Koning, C. B. Tetrahedron 2005, 61, 7746. (c) Schmidt,
B. J. Org. Chem. 2004, 69, 7672. (d) Lee, H.-Y.; Kim, H. Y.; Tae, H.;
Kim, B. G.; Lee, J. Org. Lett. 2003, 5, 3439. (e) Grigg, R.; Hodgson, A.;
Morris, J.; Sridharan, V. Tetrahedron Lett. 2003, 44, 1023. (f) Kinderman,
S. S.; Van Maarseven, J. H.; Schoenmaker, H. E.; Hiemstra, H.; Rutjes, F.
P. J. T. Org. Lett. 2001, 3, 2045. (g) Evans, P.; Grigg, R.; Ramzan, M. I.;
Sridharan, V.; York, M. Tetrahedron Lett. 1999, 40, 3021.
Phosphonylated azaheterocycles are an important class of
compounds with high biological potential as conformationally
restricted bioisosteres of amino acids.1 During our research2 in
this area, we became interested in phosphonopyrroles as the
well-known biological properties of pyrroles3 may be enhanced
by the presence of a phosphonate group. Only a limited amount
of research on the synthesis of these compounds has been
performed. 2-Phosphonopyrroles can be obtained through direct
phosphorylation of a pyrrole nucleus, but only in low to
moderate yields.4 Nitrile ylides containing an electron-with-
drawing phosphonate group have been reacted with alkynes5
or alkenes containing a suitable leaving group6 to yield
2-phosphonopyrroles via a 1,3-dipolar cycloaddition. One
(1) The topic of nonaromatic phosphonylated azaheterocycles has been
reviewed recently: Moonen, K.; Laureyn, I.; Stevens, C. V. Chem. ReV.
2004, 104, 6177.
(2) (a) Moonen, K.; Stevens, C. V. Synthesis 2005, 3603. (b) Vander-
hoydonck, B.; Stevens, C. V. J. Org. Chem. 2005, 70, 191.
(3) The Synthesis, ReactiVity, and Physical Properties of Substituted
Pyrroles; Alan Jones, R., Ed.; Pyrroles; John Wiley & Sons:New York,
1992; Vol. 48, Part 2, p 640.
(14) (a) Donohoe, T. J.; Orr, A. J.; Gosby, K.; Bingham, M. Eur. J.
Org. Chem. 2005, 1969 (and references therein). (b) Evanno, L.; Nay, B.;
Bodo, B. Synth. Commun. 2005, 35, 1559.
(15) We reported recently that regioselectivity in phosphite additions to
R,â-unsaturated imines is very dependent on the type of reagent used:
Moonen, K.; Van Meenen, E.; Verwe´e, A.; Stevens, C. V. Angew. Chem.,
Int. Ed. 2005, 44, 7407.
10.1021/jo060160e CCC: $33.50 © 2006 American Chemical Society
Published on Web 04/11/2006
4006
J. Org. Chem. 2006, 71, 4006-4009