Communications
2042 – 2048; c) C. Nuckolls, T. J. Katz, T. Verbiest, S. Van El-
shocht, H.-G. Kuball, S. Kiesewalter, A. J. Lovinger, A. Per-
soons, J. Am. Chem. Soc. 1998, 120, 8656 – 8660.
[2] a) F. Furche, R. Ahlrichs, C. Wachsmann, E. Weber, A.
Sobanski, F. Vögtle, S. Grimme, J. Am. Chem. Soc. 2000, 122,
1717 – 1724; b) G. Treboux, P. Lapstun, Z. Wu, K. Silverbrook,
Chem. Phys. Lett. 1999, 301, 493 – 497; c) D. Beljonne, Z. Shuai,
J. L. BrØdas, M. Kauranen, T. Verbiest, A. Persoons, J. Chem.
Phys. 1998, 108, 1301 – 1304.
[3] a) Y. Xu, Y. X. Zhang, H. Sugiyama, T. Umano, H. Osuga, K.
Tanaka, J. Am. Chem. Soc. 2004, 126, 6566 – 6567; b) I. Sato, R.
Yamashima, K. Kadowaki, J. Yamamoto, T. Shibata, K. Soai,
Angew. Chem. 2001, 113, 1130 – 1132; Angew. Chem. Int. Ed.
2001, 40, 1096 – 1098.
Scheme 5. Synthesis of 9,10-dimethoxy[7]helicene.
[4] C. Nuckolls, R. Shao, W.-G. Jang, N. A. Clark, D. M. Walba, T. J.
Katz, Chem. Mater. 2002, 14, 773 – 776.
[5] a) B. Laleu, P. Mobian, C. Herse, B. W. Laursen, G. Hopfgartner,
G. Bernardinelli, J. Lacour, Angew. Chem. 2005, 117, 1913 –
1917; Angew. Chem. Int. Ed. 2005, 44, 1879 – 1883; b) M. T.
Reetz, S. Sostmann, Tetrahedron 2001, 57, 2515 – 2520.
[6] a) S. D. Dreher, T. J. Katz, K.-C. Lam, A. L. Rheingold, J. Org.
Chem. 2000, 65, 815 – 822; b) M. T. Reetz, S. Sostmann, J.
Organomet. Chem. 2000, 603, 105 – 109; c) M. T. Reetz, E. W.
Beuttenmüller, R. Goddard, Tetrahedron Lett. 1997, 38, 3211 –
3214.
Table 1: X-ray crystal structures of 18b, 18c, and 20 which show face and
side elevations (hydrogen atoms are omitted for clarity; red O).
18b
18c
20
[7] a) H. Sugiura, Y. Takahira, M. Yamaguchi, J. Org. Chem. 2005,
70, 5698 – 5708; b) O. Ermer, J. Neudoerfl, Helv. Chim. Acta
2001, 84, 1268 – 1313; c) E. Murguly, R. McDonald, N. R.
Branda, Org. Lett. 2000, 2, 3169 – 3172; d) K. Deshayes, R. D.
Broene, I. Chao, C. B. Knobler, F. Diederich, J. Org. Chem. 1991,
56, 6787 – 6795; e) L. Owens, C. Thilgen, F. Diederich, C. B.
Knobler, Helv. Chim. Acta 1993, 76, 2757 – 2774.
[8] a) A. J. Lovinger, C. Nuckolls, T. J. Katz, J. Am. Chem. Soc. 1998,
120, 264 – 268; b) T. P. Bender, Y. Qi, J. P. Gao, Z. Y. Wang,
Macromolecules 1997, 30, 6001 – 6006; c) Y. J. Dai, T. J. Katz, J.
Org. Chem. 1997, 62, 1274 – 1285; d) J. M. Fox, D. Lin, Y. Itagaki,
T. Fujita, J. Org. Chem. 1998, 63, 2031 – 2038.
[9] See for example: a) R. El Abed, B. B. Hassine, J.-P. GenÞt, M.
Gorsane, A. Marinetti, Eur. J. Org. Chem. 2004, 1517 – 1522;
b) H. Meier, M. Schwertel, D. Schollmeyer, Angew. Chem. 1998,
110, 2224 – 2226; Angew. Chem. Int. Ed. 1998, 37, 2110 – 2113;
c) A. M. Gilbert, T. J. Katz, W. E. Geiger, M. P. Robben, A. L.
Rheingold, J. Am. Chem. Soc. 1993, 115, 3199 – 3211; d) C. A.
Liberko, L. L. Miller, T. J. Katz, L. Liu, J. Am. Chem. Soc. 1993,
115, 2478 – 2482; e) B. Yang, L. Liu, T. J. Katz, C. A. Liberko,
L. L. Miller, J. Am. Chem. Soc. 1991, 113, 8993 – 8994; f) L. Liu,
B. Yang, T. J. Katz, M. K. Poindexter, J. Org. Chem. 1991, 56,
3769 – 3775.
[10] a) K. Yano, M. Osatani, K. Tani, T. Adachi, K. Yamamoto, H.
Matsubara, Bull. Chem. Soc. Jpn. 2000, 73, 185 – 189; b) C.
Stammel, R. Froehlich, C. Wolff, H. Wenck, A. de Meijere, J.
Mattay, Eur. J. Org. Chem. 1999, 1709 – 1718; c) A. Terfort, H.
Goerls, H. Brunner, Synthesis 1997, 79 – 86; d) L. Liu, T. J. Katz,
Tetrahedron Lett. 1991, 32, 6831 – 6834; e) W. H. Laarhoven,
W. J. C. Prinsen, Top. Curr. Chem. 1984, 125, 63 – 130.
[11] a) A. Urbano, Angew. Chem. 2003, 115, 4116 – 4119; Angew.
Chem. Int. Ed. 2003, 42, 3986 – 3989; b) R. H. Martin, Angew.
Chem. 1974, 86, 727 – 738; Angew. Chem. Int. Ed. Engl. 1974, 13,
649 – 660.
forms—type I in which the burden of torsional strain is mainly
accommodated by the central arene (exemplified by 18b),
and type II in which each ofthe internal arenes is distorted to
a similar extent (exemplified by 18c and 20).
In summary, concise and efficient routes to phenan-
threnes, helicenes, and azahelicenes have been achieved by
using homolytic aromatic substitution reactions. Points of
interest from a synthetic perspective are the use of halo and
alkoxy substituents to control the stereochemical course of
Wittig reactions which lead to stilbene and bis(stilbene)
precursors[18] and their subsequent role as protecting groups
in homolytic aromatic substitution reactions. Notable from a
structural perspective is the recognition oftwo distinct
helicene types and the spontaneous formation of enantio-
morphous single crystals on recrystallization of rac-18c from
ethyl acetate/hexane.
Received: December 2, 2005
Published online: February 28, 2006
Keywords: helicenes · homolytic aromatic substitution ·
.
polyaromatic compounds · protecting groups ·
radical cyclization
[12] a) K. Nakano, Y. Hidehira, K. Takahashi, T. Hiyama, K. Nozaki,
Angew. Chem. 2005, 117, 7298 – 7300; Angew. Chem. Int. Ed.
2005, 44, 7136 – 7138: ; b) Y. Ogawa, M. Toyama, M. Karikomi,
K. Seki, K. Haga, T. Uyehara, Tetrahedron Lett. 2003, 44, 2167 –
2170; c) D. Peꢀa, A. Cobas, D. PØrez, E. Guitiꢁn, L. Castedo,
Org. Lett. 2003, 5, 1863 – 1866; d) Y. Ogawa, T. Ueno, M.
Karikomi, K. Seki, K. Haga, T. Uyehara, Tetrahedron Lett. 2002,
[1] a) T. J. Wigglesworth, D. Sud, T. B. Norsten, V. S. Lekhi, N. R.
Branda, J. Am. Chem. Soc. 2005, 127, 7272 – 7273; b) E. Botek,
B. Champagne, M. Turki, J.-M. AndrØ, J. Chem. Phys. 2004, 120,
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 2242 –2245