1582 Journal of Medicinal Chemistry, 2007, Vol. 50, No. 7
Peretto et al.
(8) (a) Myslivecek, J.; Trojan, S. Regulation of adrenoceptors and
muscarinic receptors in the heart. Gen. Physiol. Biophys. 2003, 22,
3-14. (b) Wang, Z.; Shi, H.; Wang, H. Functional M3 muscarinic
acetylcholine receptors in mammalian hearts. Br. J. Pharmacol. 2004,
142, 395-408 and references cited therein.
(9) Sahai, A.; Khan, M. S.; Arya, M.; John, J.; Singh, R.; Patel, H. R.
The overactive bladder: Review of current pharmacotherapy in adults.
Part 2: treatment options in cases refractory to anticholinergics.
Expert Opin. Pharmacother. 2006, 7, 529-538.
(10) Catalyst, version 4.9; Accelrys, Inc.: San Diego, CA, 2003.
(11) Greene, J.; Kahn, S.; Savoj, H.; Sprague, P.; Teig, S. Chemical
function queries for 3D database search. J. Chem. Inf. Comput. Sci.
1994, 34, 1297-1308.
(12) Saberi, F.; O’Donnell, D. E The role of tiotropium bromide, a long-
acting anticholinergic bronchodilator, in the management of COPD.
Treat. Respir. Med. 2005, 4, 275-281.
responses produced by methacholine were expressed as the percent
of maximal contraction produced by KCl (80 mM).
One left atrial preparation was taken from each rat, and set up
occurred as described for the rat urinary bladder, under a resting
tension of 0.5 g and at 33 °C. EFS was applied to preparations at
a basal rate of 1 Hz, 5 ms pulse duration, and 1.5 times the threshold
voltage to obtain a stabilization of contractions (basal force).
Electrodes were connected to asynchronous EMKA stimulators
(model STM-B01). After that, isoprenaline at 30 nM was tested,
and strips having a positive inotropic response less than 10% of
the basal force were discarded. CRCs to methacholine on EFS-
induced twitch contractions were constructed in the absence or
presence of tolterodine or compound 22g (0.01, 0.03, and 0.1 µM;
45 min before, each). The negative inotropic effects produced by
methacholine were expressed as delta percent of the basal force of
contraction. Antagonist potency of tolterodine or compound 22g
was estimated as the ability of the compounds to rightward shift
CRCs to methacholine in both the rat urinary bladder and the left
atrium. Competitive antagonism was checked by the Schild plot
method by plotting the log of antagonist concentrations versus log-
(DR-1): a plot with linear regression line and slope not significantly
different from unity was considered as proof of simple reversible
competition. In the Schild plot, the intercept on the abscissa (pKB)
was taken as estimation of the antagonist potency.
(13) Banholzer, R.; Bauer, R. New bi- and tricyclic aminoalcohol esters,
their preparation and their use in medicaments. Patent DE4108393,
1991.
(14) Drug Data Rep. 2001, 23, 550.
(15) Hedge, S. S. Muscarinic receptors in the bladder: From basic research
to therapeutics. Br. J. Pharmacol. 2006, 147, S80-S87.
(16) Alabaster, V. A. Discovery and development of selective M3
antagonists for clinical use. Life Sci. 1997, 60, 1053-1060.
(17) Nilvebrant, L.; Halle´n, B.; Larsson, G. TolterodinesA new bladder
selective muscarinic receptor antagonist: Preclinical pharmacological
and clinical data. Life Sci. 1997, 60, 1129-1136.
(18) (a) Cross, P. E.; Stobie, A. Quinuclidine esters process and intermedi-
ate for their preparation and pharmaceutical compositions containing
them. International patent WO 9306098, 1992. (b) Marriott, D. P.;
Dougall, I. G.; Meghani, P.; Liu, Y.; Flower D. F. Lead generation
using pharmacophore mapping and three-dimensional database
searching: Application to muscarinic M3 receptor antagonists J. Med.
Chem. 1999, 42, 3210-3216.
(19) Diouf, O.; Gadeau, S.; Chelle´, F.; Gelbcke, M.; Talaga, P.; Christophe,
B.; Gillard, M.; Massingham, R.; Guyaux, M. A new series of M3
muscarinic antagonists based on the 4-amino-piperidine scaffold
Bioorg. Med. Chem. Lett. 2002, 12, 2535-2539.
(20) Miyachi, H.; Kiyota, H.; Segawa, M. Novel imidazole derivatives
with subtype-selective antimuscarinic activity Bioorg. Med. Chem.
Lett. 1998, 8, 2163-2168.
(21) CAP Screening, Chemicals Available for Purchase Screening version;
Accelrys, Inc.: San Diego, CA, 2002.
Acknowledgment. This study was supported by Chiesi
Farmaceutici, Parma, Italy. The authors thank Dr. Alberto Cerri,
Dr. Sergio Menegon, and Dr. Samuele Pedraglio (NiKem
Research) for the analytical support and Dr. Stefano Palea
(Urosphere) for the functional in vitro studies on rat isolated
tissues.
Supporting Information Available: Spectroscopic data and
elemental analyses for compounds 14, 16-18, 21b, 21d-l, 22b-
l, 23g, 23i, 23k, 24, 25, 27-35, 38-54. This material is available
References
(22) Maybridge, version 2001; Maybridge Chemical Company, Ltd.:
Cornwall, U.K., 2001.
(1) (a) Kubo, T.; Fukuda, K.; Mikami, A.; Maeda, A.; Takahashi, H.;
Mishina, M.; Haga, T.; Haga, K.; Ichiyama, A.; Kanagawa, K.;
Kojima, M.; Matsuo, H.; Hirose, T.; Numa, S. Cloning, sequencing
and expression of complementary DNA encoding the muscarinic
acetylcholine receptor. Nature 1986, 323, 441-416. (b) Eglen, R.
M. Muscarinic receptor subtypes in neuronal and non-neuronal
cholinergic function. Auton. Autacoid Pharmacol. 2006, 26, 219-
233.
(2) (a) Caulfield, M. P. Muscarinic receptors-characterization, coupling
and function. Pharmacol. Ther. 1993, 58, 319-379. (b) Abrams, P.;
Andersson, K. E.; Buccafusco, J. J.; Chapple, C.; Chet de Groat,
W.; Fryer, A. D.; Laties, A.; Nathanson, N. M.; Pasricha, P. J.; Wein,
A. J. Muscarinic receptors: Their distribution and function in body
systems, and the implications for treating overactive bladder. Br. J.
Pharmacol. 2006, 148, 565-578.
(3) (a) Bymaster, F. P.; McKinzie, D. L.; Felder, C. C.; Wess, J. Use of
M1-M5 muscarinic receptor knockout mice as novel tools to
delineate the physiological roles of the muscarinic cholinergic system.
Neurochem. Res. 2003, 28, 437-442. (b) Wess, J. Novel insights
into muscarinic acetylcholine receptor function using gene targeting
technology. Trends Pharmacol. Sci., 2003, 24, 414-420.
(4) (a) Broadley, K. J.; Kelly, D. R. Muscarinic receptor agonists and
antagonists. Molecules 2001, 6, 142-193. (b) Racke´, K.; Juergens,
U. R.; Matthiesen, S. Control by cholinergic mechanisms. Eur. J.
Pharmacol. 2006, 533, 57-68.
(5) Wang, P.; Luthin, G. R.; Ruggieri, M. R. Muscarinic acetylcholine
receptor subtypes mediating urinary bladder contractility and coupling
to GTP binding proteins. J. Pharmacol. Exp. Ther. 1995, 273, 959-
966.
(6) Igawa, Y.; Zhang, X.; Nishizawa, O.; Umeda, M.; Iwata, A.; Taketo,
M. M.; Manabe, T.; Matsui, M.; Andersson, K. E. Cystometric
findings in mice lacking muscarinic M2 or M3 receptors. J. Urol.
2004, 172, 2460-2464.
(7) (a) Minette, P. A.; Barnes, P. J. Muscarinic receptor subtypes in lung.
Clinical implications. Am. ReV. Respir. Dis. 1990, 141, S162-S165.
(b) Gosens, R.; Zaagsma, J.; Meurs, H.; Halayki, A. J. Muscarinic
receptor signaling in the pathophysiology of asthma and COPD.
Respir. Res. 2006, 7, 73-87.
(23) (a) Kurogi, Y.; Gu¨ner, O. F. Pharmacophore modeling and three-
dimensional database searching for drug design using catalyst. Curr.
Med. Chem. 2001, 8, 1035-1055. (b) Hecker, E. A.; Duraiswami,
C.; Andrea, T. A.; Diller, D. J. Use of catalyst pharmacophore models
for screening of large combinatorial libraries. J. Chem. Inf. Comput.
Sci. 2002, 42, 1204-1211.
(24) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.
Experimental and computational approaches to estimate solubility
and permeability in drug discovery and development settings. AdV.
Drug DeliVery ReV. 1997, 23, 3-25.
(25) (a) Teague, S. J.; Davis, A. M.; Leeson, P. D.; Oprea, T. I. The design
of leadlike combinatorial libraries. Angew. Chem., Int. Ed. 1999, 38,
3743-3748. (b) Excluded groups: acrylamide, acyclic diketyl, acyl
halide, aldehyde, aliphatic imine, aliphatic ketone, aliphatic nitro,
aliphatic (thio)ester, alkyl halide, anhydride, azide, aziridine, beta-
heterosubstituted carbonyl, epoxide, halopyrimidine, hetero-allyl, iso-
(thio)cyanate, maleimide, michael acceptor, perhalo ketone, phos-
phonate ester, phospho-, sulfonate ester, thiol, thio(urea), O-O/N-
N/O-S/O-N single bonds and transition metal.
(26) Henze, H. R.; Furman, I. A. Researches on substituted 5-phenyl-
idantoins. J. Am. Chem. Soc. 1954, 76, 4152-4156.
(27) Muccioli, G. G.; Poupaert, J. H.; Wouters, J.; Norberg, B.; Pappitz,
W.; Scriba, G. K. E.; Lambert, D. M. A rapid and efficient
microwave-assisted synthesis of hydantoins and thiohydantoins.
Tetrahedron 2003, 59, 1301-1307.
(28) (a) Pelletier, J. C.; Kincaid, S. Mitsunobu reaction modifications
allowing product isolation without chromatography: application to
a small parallel library. Tetrahedron Lett. 2000, 41, 797-800. (b)
Alcaraz, L.; Baxter, A.; Bent, J.; Bowers, K.; Braddock, M.;
Clandingboel, D.; Donald, D.; Fagura, M.; Furber, M.; Laurent, C.;
Lawson, M.; Mortimore, M.; McCormick, M.; Roberts, N.; Robert-
son, M. Novel P2X7 receptor antagonists. Bioorg. Med. Chem. Lett.
2003, 13, 4043-4046.
(29) (a) Uscumlic, G. S.; Drmanic, S. Z.; Krstic, V. V. Reversed substituent
effect on CdO stretching vibrations in hydantoin derivatives. Indian
J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1997, 36, 193-