C O M M U N I C A T I O N S
Table 2. Effect of Inhibitors on Peptidase Activities of Rabbit
Am. Chem. Soc. 1998, 120, 10270-10271. (c) Barnhart, R. W.; Wang,
X.; Nobeda, P.; Bergens, S. H.; Whelan, J.; Bosnich, B. J. Am. Chem.
Soc. 1994, 116, 1821-1830. (d) Naasz, R.; Arnold, L. A.; Minnaard, A.
J.; Feringa, B. L. Angew. Chem., Int. Ed. 2001, 40, 927-930. (e) Evans,
D. A.; Janey, J. M. Org. Lett. 2001, 3, 2125-2128.
Muscle 26S Proteasomea
substrate
3 (10
µ
M)b
11 (10
µ
M)b
12 (200 µM)
% inhibition of
chymotrypsin-like site
87.4 ( 3.7
15.5 ( 3.9
35.6 ( 0.2
83.1 ( 3.2
20.5 ( 5.0
24.6 ( 2.8
19.1
(5) For reviews on enantioselective conjugate addition reactions, see: (a)
Tomioka, K.; Nagaoka, Y.; Yamaguchi, M. In ComprehensiVe Asymmetric
Catalysis; Jacobsen, E. N., Pfalz, A., Yamamoto, H., Eds.; Springer:
Berlin, 1999; Vol. 3, Chapters 31.1 and 31.2. (b) Sibi, M. O.; Manyem,
S. Tetrahedron 2000, 56, 8033-8061.
(6) For catalytic, enantioselective conjugate additions using silicon-containing
substrates, see: (a) Masumoto, Y.; Hayashi, T.; Ito, Y. Tetrahedron 1994,
50, 335-346 and references therein. (b) Shintani, R.; Okamoto, K.;
Hayashi, T. Org. Lett. 2005, 7, 4757-4759. (c) Lipshutz, B. H.; Tanaka,
N.; Taft, B. R.; Lee, C.-T. Org. Lett. 2006, ASAP.
% inhibition of
caspase-like site
no inhibition
no inhibition
% inhibition of
trypsin-like site
a Purified 26S proteasome was used at a concentration of 1 µg/mL.
Peptidase activity was measured using fluorogenic substrates specific for
each site, in the presence of inhibitors or 1% DMSO as a control. b The
results shown represent the mean ( the range of two experiments, each
run in duplicate.
(7) Gandelman, M.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44, 2393-
2397 and references therein.
(8) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125, 11204-
11205.
(9) For studies concerning the biological activity of lactacystin, see: (a)
Fenteany, G. A.; Standaert, R. F.; Reichard, G. A.; Corey, E. J.; Schreiber,
S. L. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 3358-3362. (b) Fenteany,
G. A.; Standaert, R. F.; Lane, W. S.; Choi, S.; Corey, E. J.; Schreiber, S.
L. Science 1995, 268, 726-731.
proteolytic subunits at similar levels as omuralide (3) under identical
conditions. In contrast, the epimeric spiro â-lactone 12 was inactive
at concentrations below 200 µM. Though the possibility that spiro
â-lactone 11 could undergo isomerization into omuralide under the
assay conditions must also be considered, this appears unlikely given
the observed stability of 11.28 Rather, these data indicate that the
position of the â-lactone is not important for activity, and that the
configuration at C-6 is critical for reasons other than â-lactone
formation. Recent work has demonstrated the importance of a
hydrogen bond between the C-6 hydroxyl and the N-terminal amino
group of the proteasome subunit in stabilizing the omuralide-
proteasome complex (Figure 2); the presence of the C-6 hydroxyl
prevents the binding of the water molecule necessary for hydroly-
sis.29 An analogous hydrogen bond is revealed in the crystal
structure of the proteasome bound to the dipeptide boronic acid
inhibitor bortezomib.30 These results with 11 and 12 lend additional
support to the importance of this H-bond interaction as a guiding
principle in the design of new proteasome inhibitors.
The total synthesis of lactacystin was accomplished in 13 steps
and 11.0% overall yield from silyl imide 4. The route is efficient,
requiring a single protecting group and only five chromatographic
purifications. The pursuit of lactacystin as a target inspired the
design of a new imide substrate for aluminum salen-catalyzed
conjugate additions. Moreover, an unusual spiro â-lactone was
employed for the first time as an intermediate in total synthesis,
allowing for a novel lactacystin end-game strategy. Spiro â-lactone
11 has proven interesting in a completely different context, as well,
as an inhibitor of the 26S proteasome with similar potency to the
known inhibitor omuralide.
(10) Corey, E. J.; Reichard, G. A. J. Am. Chem. Soc. 1992, 114, 10677-10678.
(11) For reviews on lactacystin total syntheses, see: (a) Corey, E. J.; Li, W.-
D. Z. Chem. Pharm. Bull. 1999, 47, 1-10. (b) Masse, C. E.; Morgan, A.
J.; Adams, J.; Panek, J. S. Eur. J. Org. Chem. 2000, 2513-2528. For
recent total syntheses, see: (c) Donohoe, T. J.; Sintim, H. O.; Sisangia,
L.; Harling, J. D. Angew. Chem., Int. Ed. 2004, 43, 2293-2296. (d) Ooi,
H.; Ishibashi, N.; Iwabuchi, Y.; Ishihara, J.; Hatakeyama, S. J. Org. Chem.
2004, 69, 7765-7768. (e) Fukuda, N.; Sasaki, K.; Sastry, T. V. R. S.;
Kanai, M.; Shibasaki, M. J. Org. Chem. 2006, 71, 1220-1225. (f) Hayes,
C. J.; Sherlock, A. E.; Selby, M. D. Org. Biomol. Chem. 2006, 4, 193-
195.
(12) For approaches to lactacystin involving asymmetric catalysis in key steps,
see refs 11e and 11f and the following: (a) Nagamitsu, T.; Sunazuka, T.;
Tanaka, H.; Omura, S.; Sprengler, P. A.; Smith, A. B., III. J. Am. Chem.
Soc. 1996, 118, 3548-3590. (b) Panek, J. S.; Masse, C. E. Angew. Chem.,
Int. Ed. 1999, 38, 1093-1095. (c) Soucy, F.; Grenier, L.; Behnke, M. L.;
Destree, A. T.; McCormack, T. A.; Adams, J.; Plamondon, L. J. Am. Chem.
Soc. 1999, 121, 9967-9976.
(13) Tamao, K.; Ishida, N. Tetrahedron Lett. 1984, 25, 4249-4252.
(14) For details of imide synthesis, see Supporting Information.
(15) For examples of intramolecular alkoxide attack on alkylsilanes, see: (a)
Kirmse, W.; So¨llenbo¨hmer, F. J. Chem. Soc., Chem. Commun. 1989, 774-
775. (b) Harada, T.; Imanaka, S.; Ohyama, Y.; Matsuda, Y.; Oku, A.
Tetrahedron Lett. 1992, 33, 5807-5810. (c) Gibson, C.; Buck, T.; Walker,
M.; Bru¨ekner, R. Synlett 1998, 201-205.
(16) Tamao, K.; Ishida, N.; Kumada, M. J. Org. Chem. 1983, 48, 2120.
(17) To our knowledge, there has been only one prior synthesis of the 1-oxo-
2-oxa-5-azaspiro[3.4]octane ring system: Papillon, J. P. N.; Taylor, R. J.
K. Org. Lett. 2000, 2, 1978-1990.
(18) For â-lactone formation using similar conditions, see: Adam, W.; Baeza,
J.; Liu, J.-C. J. Am. Chem. Soc. 1972, 94, 2000-2006.
(19) Ranier, A.; Dax, K.; Link, R. W.; Steutz, A. E. Carbohydr. Res. 1983,
118, C-5-C-6 and references therein.
(20) DeMartino, G. N.; Slaughter, C. A. J. Biol. Chem. 1999, 274, 22123.
(21) For a review, see: Zavrski, I.; Jakob, C.; Schmid, P.; Krebbel, H.; Kaiser,
M.; Fleissner, C.; Rosche, M.; Possinger, K.; Sezer, O. Anti-Cancer Drugs
2005, 16, 475-481.
Acknowledgment. This work was supported by the NIH (GM-
59316) and by a Predoctoral Fellowship from the National Science
Foundation to E.P.B. We thank Prof. Alfred L. Goldberg and Alice
Callard from the Department of Cell Biology at the Harvard Medical
School for materials and assistance in carrying out the 26S
proteasome assay. Dr. R. Staples carried out the X-ray structural
analysis.
(22) Corey, E. J.; Reichard, G. A.; Kania, R. Tetrahedron Lett. 1993, 34, 6977-
6980.
(23) (a) Dick, L. R.; Cruikshank, A. A.; Grenier, L.; Melandri, F. D.; Nunes,
S. L.; Stein, R. L. J. Biol. Chem. 1996, 271, 7273-7276. (b) Dick, L. R.;
Cruikshank, A. A.; Destree, A. T.; Grenier, L.; McCormack, T. A.;
Melandri, F. D.; Nunes, S. L.; Palombella, V. J.; Parent, L. A.; Plamondon,
L.; Stein, R. L. J. Biol. Chem. 1997, 272, 182-188.
(24) Groll, M.; Ditzel, L.; Lo¨we, J.; Stock, D.; Botchtler, M.; Bartunik, H. D.;
Huber, R. Nature 1997, 386, 463-471.
(25) Corey, E. J.; Li, W.-J. D.; Nagamitsu, T.; Fenteany, G. Tetrahedron 1999,
55, 3305-3316.
Supporting Information Available: Experimental procedures, ee
analyses, characterization data for all new compounds, details of
proteasome assay experiments, and X-ray coordinates for 7. This
(26) For details of the synthesis of 12, see Supporting Information.
(27) (a) Kisselev, A. F.; Goldberg, A. L. In Methods of Enzymology; Deshaies,
R. J., Ed.; Elsevier: Amsterdam, 2005; Vol. 398, pp 364-378. (b)
Kisselev, A. F.; Callard, A.; Goldberg, A. L. J. Biol. Chem. 2006, 281,
8582-8590.
(28) â-Lactone 11 does not undergo conversion to 3 upon long-term storage
as a stock solution in DMSO; we are currently investigating its behavior
under assay conditions.
(29) (a) Groll, M.; Huber, R.; Potts, B. C. J. Am. Chem. Soc. 2006, 128, 5136-
5141. (b) Groll, M.; Larionov, O. V.; Huber, R.; de Meijere, A. Proc.
Natl. Acad. Sci. U.S.A. 2006, 103, 4576-4579 and references therein.
References
(1) For a review, see: Fleming, I. Science of Synthesis; Thieme: Stuttgart,
2002; Vol. 4, pp 927-946.
(2) Fleming, I.; Barbaro, A.; Walter, D. Chem. ReV. 1997, 97, 2063-2192.
(3) For a review, see: Jones, G. R.; Landais, Y. Tetrahedron 1994, 50, 335-
346.
(4) For isolated examples of â-silyl carbonyl derivatives formed by asymmetric
catalytic methods, see: (a) Martin, S. F.; Oalmann, C. J.; Liras, S.
Tetrahedron Lett. 1992, 33, 6727-6730. (b) Lo, M. M.-C.; Fu, G. C. J.
(30) Groll, M.; Berkers, C. R.; Ploegh, H. L.; Ovaa, H. Structure 2006, 14,
451-456.
JA061970A
9
6812 J. AM. CHEM. SOC. VOL. 128, NO. 21, 2006