10.1002/chem.202000516
Chemistry - A European Journal
COMMUNICATION
[4]
a) J. Wang, E. Benedetti, L. Bethge, S. Vonhoff, S. Klussmann, J.-J.
Vasseur, J. Cossy, M. Smietana, S. Arseniyadis, Angew. Chem., Int.
Ed. 2013, 52, 11546-11549; b) E. Benedetti, N. Duchemin, L. Bethge,
S. Vonhoff, S. Klussmann, J.-J. Vasseur, J. Cossy, M. Smietana,
bicyclic O,O-acetals in high yields (up to 99%) and excellent
diastereo- and enantioselectivities (up to >99:1 dr, up to 95% ee).
The method was applied to a variety of ,-unsaturated 2-acyl-
imidazoles and could be easily scaled up. Most importantly, this
reaction, which has no equivalent in the metalloenzyme arsenal
obtained through directed evolution, emphasizes furthermore the
versatility of DNA-based asymmetric catalysis and its efficacy in
mimicking nature’s hetero-Diels-Alderases in water. Ultimately,
we hope this will trigger new developments in the field and
inspire the development of other cycloaddition reactions.
S. Arseniyadis,
Chem.
Commun.
2015,
51,
6076-6079;
c) K. Amirbekyan, N. Duchemin, E. Benedetti, R. Joseph, A. Colon,
S. A. Markarian, L. Bethge, S. Vonhoff, S. Klussmann, J. Cossy,
J.-J. Vasseur, S. Arseniyadis, M. Smietana, ACS Catal. 2016, 6, 3096-
3105; d) N. Duchemin, A. Skiredj, J. Mansot, K. Leblanc, J.-J. Vasseur,
M. A. Beniddir, L. Evanno, E. Poupon, M. Smietana, S. Arseniyadis,
Angew. Chem., Int. Ed. 2018, 57, 11786-11791; e) J. Mansot, S.
Aubert, N. Duchemin, J.-J. Vasseur, S. Arseniyadis, M. Smietana,
Chem. Sci. 2019, 10, 2875-2881.
Conflicts of interest
[5]
N. Gaß, J. Gebhard, H.-A. Wagenknecht, ChemPhotoChem 2017, 1,
48-50.
The authors declare no competing financial interest.
Acknowledgements
[6]
[7]
J. Oelerich, G. Roelfes, Chem. Sci. 2013, 4, 2013-2017.
A. Rioz‐ Martínez, J. Oelerich, N. Ségaud, G. Roelfes, Angew. Chem.,
Int. Ed. 2016, 55, 14136-14140.
[8]
a) V. Gouverneur, M. Reiter, Chem. Eur. J. 2005, 11, 5806-5815;
b) J. W. Bogart, A. A. Bowers, J. Am. Chem. Soc. 2019, 141, 1842-
1846; c) M. Ohashi, F. Liu, Y. Hai, M. B. Chen, M. C. Tang, Z. Y. Yang,
M. Sato, K. Watanabe, K. N. Houk, Y. Tang, Nature 2017, 549, 502-
506; d) R. F. Quijano-Quinones, C. S. Castro-Segura, G. J. Mena-
Rejon, M. Quesadas-Rojas, D. Caceres-CastilloD. Molecules 2018, 23,
2505-2515.
This research was supported by the Agence Nationale de la
Recherche (D-CYSIV project; ANR-2015-CE29-0021-01).
Keywords: Inverse electron-demand hetero-Diels-Alder • DNA •
biohybrid catalysis • Copper • [4+2] cycloaddition
[1]
F. Schwizer, Y. Okamoto, T. Heinisch, Y. Gu, M. M. Pellizzoni,
V. Lebrun, R. Reuter, V. Köhler, J. C. Lewis, T. Ward, Chem. Rev.
2018, 118, 142-231.
[9]
a) A. A. P. Meekel, M. Resmini, U. K. Pandit, J. Chem. Soc., Chem.
Commun. 1995, 571-572; b) A. A. P. Meekel, M. Resmini, U. K. Pandit,
Bioorg. Med. Chem. 1996, 4, 1051-1057; c) M. Hugot, N. Bensel,
M. Vogel, M. T. Reymond, B. Stadler, J. L. Reymond, U. Baumann,
Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 9674-9678; d) N. Bahr, R.
Guller, J. L. Reymond, R. A. Lerner, J. Am. Chem. Soc. 1996, 118,
3550-3555; e) Y. J. Hu, Y. Y. Ji, Y. L. Wu, B. H. Yang, M. Yeh, Bioorg.
Med. Chem. Lett. 1997, 7, 1601-1606; f) C. Baker-Glenn, N. Hodnett,
M. Reiter, S. Ropp, R. Ancliff, V. Gouverneur, J. Am. Chem. Soc. 2005,
127, 1481-1486; g) Y.-H. He, W. Hu, Z. GuanZ. J. Org. Chem. 2012,
77, 200-207; h) Z.-D. Shi, B. H. Yang, Y.-L. Wu, Y.-J. Pan, Y.-Y. Ji, M.
Yeh, Bioorg. Med. Chem. Lett. 2002, 12, 2321-2324; i) D. H. Yin, W.
Liu, Z. X. Wang, X. Huang, J. Zhang, D. C. Huang, Chin. Chem. Lett.
2017, 28, 153-158.
[2]
[3]
G. Roelfes, B. L. Feringa, Angew. Chem., Int. Ed. 2005, 44, 3230-3232.
For selected examples of DNA-based asymmetric Diels-Alder
cycloadditions, see: a) G. Roelfes, A. J. Boersma, B. L. Feringa, Chem.
Commun. 2006, 635-637; b) A. J. Boersma, B. L. Feringa, G. Roelfes,
Org. Lett. 2007, 9, 3647-3650; c) A. J. Boersma, J. E. Klijn, B. L.
Feringa, G. Roelfes, J. Am. Chem. Soc. 2008, 130, 11783-11790;
d) C. Wang, G. Jia, J. Zhou, Y. Li, Y. Liu, S. Lu, C. Li, Angew. Chem.,
Int. Ed. 2012, 51, 9352-9355; e) S. Park, I. Okamura, S. Sakashita,
J. H. Yum, C. Acharya, L. Gao, H. Sugiyama, ACS Catal. 2015, 5,
; f) X. W. Xu, W. X. Mao, F. Lin, J. L. Hu, Z. Y. He, X. C.
Weng, C. J. Wang, X. Zhou, Catal. Commun. 2016, 74, 16-18; g) M. P.
Cheng, J. Y. Hao, Y. H. Li, Y. Cheng, G. Q. Jia, J. Zhou, C. Li,
Biochimie 2018, 146, 20-27.
[10] a) J. Mansot, J.-J. Vasseur, S. Arseniyadis, M. Smietana,
ChemCatChem 2019, 11, 5686-5704; b) J. Lauberteaux, D. Pichon, O.
Baslé, M. Mauduit, R. Marcia de Figueiredo, J.-M. Campagne,
ChemCatChem 2019, 11, 5705-5722.
For selected examples of DNA-based asymmetric Friedel-Crafts
alkylations, see: h) A. J. Boersma, B. L. Feringa, G. Roelfes, Angew.
Chem., Int. Ed. 2009, 48, 3346-3348; i) S. Park, K. Ikehata, R. Watabe,
Y. Hidaka, A. Rajendran, H. Sugiyama, Chem. Commun. 2012, 48,
10398-10400; j) A. Garcia-Fernandez, R. P. Megens, L. Villarino,
G. Roelfes, J. Am. Chem. Soc. 2016, 138, 16308-16314; k) H. Zhou, D.
Chen, J. K. Bai, X. L. Sun, C. Li, R. Z. Qiao, Org. Biomol. Chem. 2017,
15, 6738-6745.
[11] J. Kypr, I. Kejnovská, D. Renčiuk, M. Vorlíčková, Nucleic Acids Res.
2009, 37, 1713-1725; b) V. I. Ivanov, L. E. Minchenkova, E. E. Minyat,
M. D. Frank-Kamenetsii, A. K. Schyolkina, J. Mol. Biol. 1974, 87, 817-
833; c) V. I. Ivanov, L. E. Minchenkova, A. K. Schyolkina, A. I.
Poletayev, Biopolymers, 1973, 12, 89-110.
[12] In the presence of 2 v/v% of co-solvent, all the CD spectra exhibited
very similar features with only a slight decrease of the positive band at
about 260-280 nm.
For selected examples of DNA-based asymmetric Michael additions,
see: l) D. Coquiere, B. L. Feringa, G. Roelfes, Angew. Chem., Int. Ed.
2007, 46
; m) Y. Li, C. Wang, G. Jia, S. Lu, C. Li,
[13] A. Draksharapu, A. J. Boersma, M. Leising, A. Meetsma, W. R. Browne,
G. Roelfes. Dalton Trans. 2015, 44, 3647-3655.
Tetrahedron 2013, 69, 6585-6590.
For selected examples of DNA-based asymmetric oxa-Michael
additions, see: n) R. P. Megens, G. Roelfes, Chem. Commun., 2012,
48, 6366-6368; o) J. S. Willemsen, R. P. Megens, G. Roelfes, J. C. M.
van Hest, F. P. J. T. Rutjes, Eur. J. Org. Chem. 2014, 2892-2898.
For selected examples of DNA-based asymmetric syn-hydrations, see:
p) A. J. Boersma, D. Coquiere, D. Geerdink, F. Rosati, B. L. Feringa, G.
[14] A. Draksharapu, A. J. Boersma, W. R. Browne, G. Roelfes. Dalton
Trans. 2015, 44, 3656-3663.
[15] F. Wang, H. Fu, Y. Jiang, Y. Zhao, Green Chem. 2008, 10, 452-456.
[16] J. Rosenthal, D. I. Schuster, J. Chem. Educ. 2003, 80, 679-690.
[17] H. Mayr, M. Patz, Angew. Chem., Int. Ed. 1994, 33, 938-957.
[18] X. Shen, H. Huo, C. Wang, B. Zhang, K. Harms, E. Meggers, Chem.
Eur. J. 2015, 21, 9720-9726.
Roelfes, Nat. Chem. 2010, 2
; q) F. Rosati, G. Roelfes,
ChemCatChem 2011, 3, 973-977; r) J. H. Yum, S. Park, R. Hiraga,
I. Okamura, S. Notsua, H. Sugiyama, Org. Biomol. Chem. 2019, 17,
2548-2553.
[19] NOESY experiments confirmed the syn-addition of H2 on the Si face of
3l. Strong NOE effects were observed between H6 and both H4 and H7a
in compound 4.
For an example of a DNA-based asymmetric fluorination reaction, see:
s) N. Shibata, H. Yasui, S. Nakamura, T. Toru, Synlett 2007, 1153-
1157.
This article is protected by copyright. All rights reserved.