C O M M U N I C A T I O N S
Scheme 1 a
a Reagents and conditions: (a) thiourea, 2,6-lutidine, DMF, 70 °C, 85% for 6, 82% for 8. (b) 3 (3.0 equiv), NIS (3.6 equiv), TfOH (0.3 equiv), MS3A,
-78 °C, 89%, R only. (c) 3 (3.0 equiv), NIS (3.6 equiv), TfOH (0.30 equiv), MS3A, -78 °C, 57% R only. (d) Ac2O, Py, CH2Cl2, -50 °C. quant (e)
LiOH‚H2O, H2O, EtOH, 80 °C, 88%. (f) Ac2O, NaHCO3, H2O, 0 °C then NaOMe, MeOH, 64%. (g) Pd(OH)2, H2 (1 atm), MeOH, H2O, 70%.
The structures 5a-d were confirmed as follows. The R config-
uration of sialosides 5a, 5c, and 5d was determined on the basis of
the 3JC1-H3ax coupling constants of the corresponding hydrolysates
of 5a, 5c, and 5d.19 The regioselectivity in the glycosylation of
diols 4a and 4d was estimated by 1H NMR analysis of the acetylated
products from 5a and 5d. The hydrolysate of the N-Troc derivative
5b-R was identical to the hydrolysate of 5a (details are shown in
Supporting Information).
using a simple glycosidation and deprotection protocol. This
coupling method allows the synthesis of the various oligosaccha-
rides containing R(2,8)- and R(2,9)-oligosialoside units, which are
effective biochemical probes for elucidating their biological activi-
ties.
Supporting Information Available: Experimental procedures for
the R-sialylation and full characterization for all compounds. This
We next conducted the synthesis of R(2,8)-tetrasialosides 1a via
5a (Scheme 1). The removal of the two chloroacetyl groups at the
C7 and C8 positions of 5a provided triol 6 in 85% yield. Treatment
of triol 6 and the 5-N,4-O-carbonyl-protected sialoside 3 (1.5 equiv)
with NIS/TfOH in CH2Cl2 at -78 °C provided R(2,8)-trisialoside
7 in 68%. The use of 3.0 equiv of the glycosyl donor 3 resulted in
the disappearance of acceptor 6 and provided trisaccahride 7 in
89% yield with complete R selectivity. Deprotection of the
chloroacetyl groups on 7 afforded the tetraol acceptor 8 in 82%
yield. Tetrasaccharide formation from 8 using 3.0 equiv of donor
3 under the same reaction conditions provided tetrasaccharide 9 in
57% yield with complete R-selectivity along with the recovered
References
(1) Angat, T.; Varki, A. Chem. ReV. 2002, 102, 439-470.
(2) Sato C.; Kitajima, K. Trends Glycosci. Glycotechnol. 1999, 11, 371-
390.
(3) Boons, G.-J.: Demchenko, A. V. Chem. ReV. 2000, 100, 4539-4565.
(4) (a) Okamoto, K.; Kondo, T.; Goto, T. Tetrahedron Lett. 1986, 27, 5229-
5232. (b) Ito, Y.; Numata, M.; Sugimoto, M.; Ogawa, T. J. Am. Chem.
Soc. 1989, 111, 8508-8510. (c) Castro-Palomino, J. C.; Tsvetkov, Y. E.;
Schmidt, R. R. J. Am. Chem. Soc. 1998, 120, 5434-5440.
(5) Demchenko A. V.; Boons, G.-J. Tetrahedron Lett. 1998, 39, 3065-3068.
(6) Yu, C.-S.; Niikura, K., Lin, C.-C.; Wong, C.-H. Angew. Chem., Int. Ed.
2001, 40, 2900-2903.
(7) Meo, D.; Demchenko, A. V.; Boons, G.-J. J. Org. Chem. 2001, 66, 5490-
5497.
(8) Ando, H.; Koike, Y.; Ishida, H.; Kiso, M. Tetrahedron Lett. 2003, 44,
6883-6886.
3
acceptor 8 (31%). The coupling constants JC1-H3ax (5.9, 5.8, 5.4,
(9) (a) Adachi, M.; Tanaka, H.; Takahashi, T. Synlett 2004, 609-614. (b)
Tanaka, H.; Adachi, M.; Takahashi, T. Chem. Eur. J. 2005, 11, 849-
862.
and 5.3 Hz) for 9 indicated that the configuration of all glycosidic
linkages was R. In addition, the regioselectivity of each glycosyl-
1
(10) Tanaka, K.; Goi, T.; Fukase K. Synlett 2005, 2958-2962.
(11) Demchenko, A. V.; Boons, G. J. Chem. Eur. J. 1999, 5, 1278-1283.
(12) Tanaka, H.; Nishiura, Y.; Adachi, M.; Takahashi, T. Heterocycles 2006,
67, 107-112.
(13) Ando H, Koike Y, Koizumi S, Ishida H, Kiso M. Angew. Chem., Int. Ed.
2005, 44, 6759-6763.
(14) (a) Murase, T.; Ishida, H.; Kiso, M.; Hasegawa A. Carbohydr. Res. 1988,
184, c1-c4. (b) Hasegawa, A.; Nagahama, T.; Ohki, H.; Hotta, K.; Ishida,
H.; Kiso, M. J. Carbohydr. Chem. 1991, 10, 493-498.
(15) The donor 3 was prepared from sialic acid by 10 steps. The details are
described in Supporting Information.
(16) Tsvetkov, Y. E.; Nifantiev, N. E. Synlett 2005, 1375-1380.
(17) Recently, Crich and co-wokers have reported on an efficient R-sialylation
in CH2Cl2 by activation of thiosialoside with diphenyl sulfoxide and triflic
anhydride: Crich, D.; Li, W. Org. Lett. 2006, 8, 959-962.
(18) (a) Zhu, T.; Boons, G.-J. Org. Lett. 2003, 3, 4201-4203. (b) Kerns, R.
J.; Zha, C.; Benakli, K.; Liang, Y.-Z. Tetrahedron Lett. 2003, 44, 8069-
8072. (c) Crich, D.; Vinod, A. U. J. Org. Chem. 2005, 70, 1291-1296.
(19) Haverkamp, J.; Spoormaker, T.; Dorland, L.; Vliegenthart, J. F. G.;
Schauer, R. J. Am. Chem. Soc. 1979, 101, 4851-4853.
ation step was confirmed by H NMR analysis of the acetylated
product 10.
Deprotection of the R(2,8)-tetrasialoside 9 was examined.
Exposure of the protected tetrasialoside 9 to basic conditions
provided amino acids 11 (88%). Acetylation the resulting amines
provided the N-acetyl derivative 12 in 64% yield. Finally, removal
of the benzyl ethers on 12 by hydrogenolysis using a palladium
catalyst afforded the fully deprotected tetrasialosides 1a.
In conclusion, an efficient and elegant synthesis of R(2,8)-
oligosialosides is described. The 5-N,4-O-carbonyl-protected sialyl
donor undergoes R-sialylation in CH2Cl2 to provide R(2,8)- and
R(2,9)-disialosides in excellent yields. The 5-N,4-O-carbonyl
protecting group was effective for improving the reactivity of the
C8 hydroxyl groups toward glycosylation. Using the sialyl building
block, the synthesis of tetra-R(2,8)-sialic acid could be accomplished
JA0613613
9
J. AM. CHEM. SOC. VOL. 128, NO. 22, 2006 7125