M. Kainuma et al. / Bioorg. Med. Chem. Lett. 16 (2006) 3213–3218
3217
Figure 7. Transcriptional activation by DPHK-01 (16) toward various NRs. Vertical scale: Relative luminescence intensity arising from luciferase
reporter gene expression.
3. Giguere, V. Endocr. Rev. 1999, 20, 68.
comparable to that of FA (13), the active form of
the antihyperlipidemic drug fenofibrate (4). These
results indicate that a diphenylmethane skeleton is
useful as a steroid skeleton substitute and a multi-
template for NR ligands. It was also demonstrated
that DPPF-01 (6) and DPHK-01 (16) are highly spe-
cific for FXR and PPARa, respectively. It is well
documented that ligands with a steroidal skeleton of-
ten show cross reactivity with several NRs. For
example, lithocholic acid acts as a ligand for both
VDR and FXR.4,12 Application of a diphenylmethane
skeleton as a scaffold of NR ligands might overcome this
problem. In addition, NR ligands with a diphenylme-
thane skeleton might elicit selectivity on cell-type/co-fac-
tor(s) which is different from that of the physiological
ligands. In this preliminary study, we examined only the
diphenylmethane skeleton. However, it is very likely that
hetero-atom analogs of a diphenylmethane skeleton,
such as diphenylamine (as found in some RAR/RXR
ligands)7,24 and diphenylether (as found in thyroxine
hormones),25 would also available as substitutes for a
steroid skeleton. Further structural development studies
of the present ligands and synthesis of candidate NR
ligands based on the above ‘diphenyl X’ skeletons are
under way.
4. Makishima, M.; Lu, T. T.; Xie, W.; Whitfield, G. K.;
Domoto, H.; Evans, R. M.; Haussler, M. R.; Mangels-
dorf, D. J. Science 2002, 296, 1313.
5. Laudet, V.; Hanni, C.; Coll, J.; Catzeflis, F.; Stehelin, D.
EMBO J. 1992, 11, 1003.
6. Eyrolles, L.; Kawachi, E.; Matsushima, Y.; Nakajima, O.;
Kagechika, H.; Hashimoto, Y.; Shudo, K. Med. Chem.
Res. 1992, 2, 361.
7. Hashimoto, Y.; Miyachi, H. Bioorg. Med. Chem. 2005, 13,
5080.
8. Hosoda, S.; Tanatani, A.; Wakabayashi, K.; Nakano, Y.;
Miyachi, H.; Nagasawa, K.; Hashimoto, Y. Bioorg. Med.
Chem. Lett. 2005, 15, 4327.
9. Boehm, M. F.; Fitzgerald, P.; Zou, A.; Elgort, M. G.;
Bischoff, E. D.; Mere, L.; Mais, D. E.; Bissonnette, R. P.;
Heyman, R. A.; Nadzan, A. M.; Reichman, M.; Allegret-
to, E. A. Chem. Biol. 1999, 6, 265.
10. Hashimoto, Y.; Shudo, K. Cell Biol. Rev. 1991, 25, 209.
11. Hashimoto, Y. Cell Struct. Funct. 1991, 16, 113.
12. Makishima, M.; Okamoto, A. Y.; Repa, J. J.; Tu, H.;
Learned, R. M.; Luk, A.; Hull, M. V.; Lustig, K. D.;
Mangelsdorf, D. J.; Shan, B. Science 1999, 284, 1362.
13. Gebel, T.; Arand, M.; Oesch, F. FEBS Lett. 1992, 309,
37.
14. Pellicciari, R.; Constantino, G.; Fiorucci, S. J. Med.
Chem. 2005, 48, 5383.
15. Maloney, P. R.; Parks, D. J.; Haffner, C. D.; Fivush, A.
M.; Chandra, G.; Plunket, K. D.; Creech, K. L.; Moore,
L. B.; Wilson, J. G.; Lewis, M. C.; Jones, S. A.; Willson,
T. M. J. Med. Chem. 2000, 43, 2971.
Acknowledgments
16. DPPF-01 (6): MS (FAB) m/z 610 (M+H)+. 1H NMR
(500 MHz, CDCl3/d): 7.38 (d, J = 8.0 Hz, 2H), 7.33–7.31
(m, 1H), 6.93 (s, 2H), 6.88–6.83 (m, 2H), 6.63–6.59 (m,
2H), 4.68 (s, 2H), 4.64 (s, 2H), 3.40–3.30 (m, 1H), 2.22 (s,
3H), 2.01–1.97 (m, 7H), 1.41 (d, J = 6.7 Hz, 6H), 0.57 (t,
J = 7.3 Hz, 6H). HRMS (FAB, M+H+) calcd. for
C34H38Cl2NO5, 610.2127, found 610.2119.
The work described in this paper was partially
supported by Grants-in-Aid for Scientific Research from
The Ministry of Education, Culture, Sports, Science and
Technology, Japan, and the Japan Society for the
Promotion of Science. The authors are grateful to
ASKA Pharm. Co. Ltd (Japan) for the generous supply
of fabric acid.
17. DPPF-13 (7): MS (FAB) m/z 625 (M+H)+. 1H NMR
(500 MHz, CDCl3/d) (racemate): 7.38 (d, J = 8.0 Hz, 2H),
7.33–7.29 (m, 1H), 6.91–6.82 (m, 4H), 6.59 (d, J = 7.9 Hz,
1H), 6.53 (d, J = 7.9 Hz, 1H), 4.68 (s, 2H), 4.00 (br, 1H),
3.83–3.80 (m, 1H), 3.69–3.66 (m, 1H), 3.34–3.30 (m, 3H),
3.24–3.20 (m, 1H), 2.10 (s, 3H), 2.00–1.96 (m, 7H), 1.41 (d,
J = 6.7 Hz, 6H), 0.57 (t, J = 7.3 Hz, 6H). HRMS (FAB,
M+H+) calcd. for C35H43Cl2N2O4, 625.2600, found
625.2597.
References and notes
1. Chawla, A.; Repa, J. J.; Evans, R. M.; Mangelsdorf, D. J.
Science 2001, 294, 1866.
2. Evans, R. M. Science 1988, 240, 889.