Vicente et al.
8
at a Rh(III) center to give a 2-methyl-2-amino-4-imino-
pentano ligand.10,11
In this paper, we show that [Au(NHdCMe2)PPh3]ClO4
9
and [Ag(NHdCMe2)2]ClO4 can also be used to prepare
acetimino complexes of platinum. The new species here
described include (i) the first cationic mono- and bis-
(acetimino) complexes of Pt(II) (1-5), (ii) the first Pt(IV)
complexes with NHdCR2 ligands (6 and 7), and (iii) the
first heteronuclear µ-acetimido complexes of any metals (8cis
and 8trans). Unfortunately, all attempts, in some of these
complexes, to provoke an intramolecular coupling process
between two acetimino ligands to give a 2-methyl-2-amino-
4-iminopentano ligand were unfruitful.
While this paper was being written, a paper by Natile et
al. has appeared12 describing the synthesis and in vitro
antitumor activity of the first acetimino complexes of
platinum, namely, the cis and trans isomers of [PtX2(NHd
CMe2)2] and [PtX2(NHdCMe2)(NH3)] (X ) Cl, I), in which
the Me2CdNH ligands form from the reaction of coordinated
ammonia with acetone in the presence of KOH. Complexes
of Pt(IV) with a different type of NH-imine [RR′Cd
NOC(Me)dNH (R/R′ ) Cl/Ar, NH2/Ph),13 Ph2CdNC(R)d
NH (R ) Me, Et),14 R′OC(R)dNH (R/R′ ) Me/Ph, Et/Me,
Et/Ph),15 or H2NNdC(R′)C(Me)dNOC(R)dNH (R/R′ )
Me/Ph, Et/Me, Et/Ph)]16 have been obtained by the attack
of various nucleophiles on (nitrile)Pt(IV) complexes.
Although many complexes containing terminal ketimido/
azavinylidene ligands (R2CdN-M/R2CdN)M/) have been
reported,17 those with an acetimido bridging ligand are scarce,
and only homonuclear species have been reported so
far.7,18-24 Nearly as many different synthetic methods as
bridging acetimido complexes have been described, none of
them being of general application. They involve processes
in which the appropriate precursors decompose thermally,21,22
rearrange,20 or react with 2-nitropropane and CO,19 2-bromo-
2-nitrosopropane,7 or Me2CdNCl.23,24
Experimental Section
IR spectroscopy, elemental analyses, and melting point deter-
minations were carried out as described elsewhere.8 Molar con-
ductivities were measured on ca. 5 × 10-4 M acetone solutions
with a Crison Micro CM2200 conductimeter. The expected ranges
for the 1:1 and 1:2 electrolytes have been reported.25 The NMR
spectra were recorded on Bruker Avance 200, 300, or 400 MHz
spectrometers. Chemical shifts are referred to TMS (1H and
13C{1H}) or H3PO4 (31P{1H}). Unless otherwise stated, all reactions
were carried out at room temperature and without special precau-
tions against moisture. CH2Cl2, acetone, and Et2O were distilled
before use from CaH2, KMnO4, and Na/benzophenone, respectively.
Other solvents [n-pentane (Baker) and n-hexane (Scharlau)] and
reagents [PtCl2 (Johnson Matthey), AgClO4, NaH (Aldrich, 60%,
dispersion in mineral oil), PPh3, and Me4NCl (Fluka)] were obtained
from commercial sources and used as received. [Ag(NHdCMe2)2]-
ClO4,9 [Au(NHdCMe2)(PPh3)]ClO4,8 cis-[PtCl2(PPh3)2],26 cis-
(9) Vicente, J.; Chicote, M. T.; Guerrero, R.; Vicente-Herna´ndez, I.; Jones,
P. G. Inorg. Chem. 2003, 42, 7644.
(10) Vicente, J.; Chicote, M. T.; Guerrero, R.; Vicente-Herna´ndez, I.;
AÄ lvarez-Falco´n, M. M. Inorg. Chem. 2006, 45, 181.
29
[PtCl2(dmso)2],27 [AuCl(PPh3)],28 and PhICl2 were prepared
(11) Vicente, J.; Chicote, M. T.; Guerrero, R.; Vicente-Herna´ndez, I.;
AÄ lvarez-Falco´n, M. M.; Jones, P. G. Organometallics 2005, 24, 4506.
(12) Boccarelli, A.; Intini, F. P.; Sasanelli, R.; Sivo, M. F.; Coluccia, M.;
Natile, G. J. Med. Chem. 2006, 49, 829.
(13) Garnovskii, D. A.; Guedes da Silva, M. F. C.; Pakhomova, T. B.;
Wagner, G.; Duarte, M. T.; Frausto da Silva, J. J. R.; Pombeiro, A. J.
L.; Kukushkin, V. Y. Inorg. Chim. Acta 2000, 300, 499.
(14) Garnovskii, D. A.; Kukushkin, V. Y.; Haukka, M.; Wagner, G.;
Pombeiro, A. J. L. Dalton Trans. 2001, 560.
(15) Bokach, N. A.; Kukushkin, V. Y.; Haukka, M.; Frausto da Silva, J. J.
R.; Pombeiro, A. J. L. Inorg. Chem. 2003, 42, 3602.
according to literature methods. [PtCl2(dtbbpy)] was synthesized
by being refluxed in acetone (15 mL), a mixture of PtCl2 (500 mg,
1.88 mmol), and dtbbpy (605 mg, 2.26 mmol) until a yellow
suspension formed, which was removed by filtration, and the solid
was washed with Et2O (3 × 5 mL) and suction dried (88% yield).
Caution: Perchlorate salts of organic cations may be explosive.
Preparations on a larger scale than that reported herein should be
avoided.
(16) Garnovskii, D. A.; Pombeiro, A. J. L.; Haukka, M.; Sobota, P.;
Kukushkin, V. Y. Dalton Trans. 2004, 1097.
(18) (a) Aime, S.; Gervasio, G.; Milone, L.; Rossetti, R.; Stanghellini, P.
L. J. Chem. Soc., Dalton Trans. 1978, 534. (b) Albini, A.; Kisch, H.
J. Organomet. Chem. 1975, 94, 75. (c) Atwood, J. L.; Milton, P. A.;
Seale, S. K. J. Organomet. Chem. 1971, 28, C29. (d) Deeming, A. J.;
Owen, D. W.; Powell, N. I. J. Organomet. Chem. 1990, 398, 299. (e)
Jennings, J. R.; Lloyd, J. E.; Wade, K. J. Chem. Soc. 1965, 5083. (f)
Khare, G. P.; Doedens, R. J. Inorg. Chem. 1976, 15, 86. (g) Richeson,
D. S.; Mitchell, J. F.; Theopold, K. H. J. Am. Chem. Soc. 1987, 109,
5868. (h) Richeson, D. S.; Mitchell, J. F.; Theopold, K. H. Organo-
metallics 1989, 8, 2570. (i) Su¨ss-Fink, G.; Khan, L.; Raithby, P. R. J.
Organomet. Chem. 1982, 228, 179. (j) Weller, F.; Dehnicke, K. Chem.
Ber. 1977, 110, 3935.
(19) Gambino, O.; Gervasio, G.; Rossetti, R.; Stanghellini, P. L. Inorg.
Chim. Acta 1984, 84, 51.
(20) Herrmann, W. A.; Bell, L. K.; Ziegler, M. L.; Pfisterer, H.; Pahl, C.
J. Organomet. Chem. 1983, 247, 39.
(21) Seale, S. K.; Atwood, J. L. J. Organomet. Chem. 1974, 73, 27.
(22) Uhl, W.; Molter, J.; Neumu¨ller, B.; Schmock, F. Z. Anorg. Allg. Chem.
2001, 627, 909.
(23) Weller, F.; Mu¨ller, U. Chem. Ber. 1979, 112, 2039.
(24) Zettler, F.; Hess, H. Chem. Ber. 1977, 110, 3943.
(25) Geary, W. J. Coord. Chem. ReV. 1971, 7, 81.
(26) Jensen, K. A. Z. Anorg. Allg. Chem. 1936, 229, 242.
(27) Price, J. H.; Williamson, A. N.; Schramm, R. F.; Wayland, B. B. Inorg.
Chem. 1978, 17, 2245.
(28) Uso´n, R.; Laguna, A. Organometallic Syntheses; Elsevier: Amsterdam,
1986; 325.3.
(29) Vicente, J.; Chicote, M. T.; Gonza´lez-Herrero, P.; Jones, P. G. Inorg.
Chem. 1997, 36, 5735.
(17) (a) Ferreira, M. J.; Martins, A. M. Coord. Chem. ReV. 2006, 250, 118-
132. (b) Kukushkin, V. Y.; Tudela, D.; Pombeiro, A. J. L. Coord.
Chem. ReV. 1996, 156, 333. (c) Guedes da Silva, M. F. C.; Frausto da
Silva, J. J. R.; Pombeiro, A. J. L. Inorg. Chem. 2002, 41, 219. (d)
Daniel, T.; Mueller, M.; Werner, H. Inorg. Chem. 1991, 30, 3118. (e)
Feng, S. G.; White, P. S.; Templeton, J. L. Organometallics 1993,
12, 2131. (f) Werner, H.; Daniel, T.; Knaup, W.; Nuernberg, O. J.
Organomet. Chem. 1993, 462, 309. (g) Powell, K. R.; Perez, P. J.;
Luan, L.; Feng, S. G.; White, P. S.; Brookhart, M.; Templeton, J. L.
Organometallics 1994, 13, 1851. (h) Andreu, P. L.; Cabeza, J. A.;
del Rio, I.; Riera, V.; Bois, C. Organometallics 1996, 15, 3004. (i)
Cabeza, J. A.; del Rio, I.; Riera, V. J. Organomet. Chem. 1997, 548,
255. (j) Castarlenas, R.; Esteruelas, M. A.; Gutierrez-Puebla, E.; Jean,
Y.; Lledos, A.; Martin, M.; On˜ate, E.; Tomas, J. Organometallics 2000,
19, 3100. (k) Castarlenas, R.; Esteruelas, M. A.; On˜ate, E. Organo-
metallics 2001, 20, 3283. (l) Guedes da Silva, M. F. C.; Frausto da
Silva, J. J. R.; Pombeiro, A. J. L. Inorg. Chem. 2002, 41, 219. (m)
Castarlenas, R.; Esteruelas, M. A.; Jean, Y.; Lledos, A.; On˜ate, E.;
Tomas, J. Eur. J. Inorg. Chem. 2001, 2871. (n) Kuznetsov, M. L.;
Nazarov, A. A.; Pombeiro, A. J. L. J. Phys. Chem. A 2005, 109, 8187.
(o) Ferreira, C. M. P.; Guedes da Silva, M. F. C.; Kukushkin, V. Y.;
Frausto da Silva, J. J. R.; Pombeiro, A. J. L. J. Chem. Soc., Dalton
Trans. 1998, 325. (p) Kiplinger, J. L.; Morris, D. E.; Scott, B. L.;
Burns, C. J. Organometallics 2002, 21, 3073. (q) Hou, Z.; Yoda, C.;
Koizumi, T.; Nishiura, M.; Wakatsuki, Y.; Fukuzawa, S.; Takats, J.
Organometallics 2003, 22, 3586. (r) Jantunen, K. C.; Burns, C. J.;
Castro-Rodriguez, I.; Da Re, R. E.; Golden, J. T.; Morris, D. E.; Scott,
B. L.; Taw, F. L.; Kiplinger, J. L. Organometallics 2004, 23, 4682.
5202 Inorganic Chemistry, Vol. 45, No. 13, 2006