ORGANIC
LETTERS
2006
Vol. 8, No. 13
2811-2813
Synthesis and Molecular Recognition of
Phosphatidylinositol-3-methylenephosphate
Joanna Gajewiak,† Yong Xu,† Stephanie A. Lee,‡ Tatiana G. Kutateladze,‡ and
Glenn D. Prestwich*,†
Department of Medicinal Chemistry, The UniVersity of Utah, 419 Wakara Way,
Suite 205, Salt Lake City, Utah 84108-1257, and Department of Pharmacology,
UniVersity of Colorado Health Sciences Center, Aurora, Colorado 80045
Received April 13, 2006
ABSTRACT
Phosphatidylinositol-3-phosphate (PtdIns(3)P) is a spatial regulator of vesicular trafficking and other vital cellular processes. We describe the
asymmetric total synthesis of a metabolically stabilized analogue, phosphatidylinositol-3-methylenephosphate (PtdIns(3)MP) from a differentially
protected myo-inositol. NMR studies of PtdIns(3)MP bound to the 15N-labeled FYVE domain showed significant 1H and 15N chemical shift
changes relative to the unliganded protein.
Phosphoinositide (PtdInsPn) signaling networks are dynami-
cally modulated by proteins with lipid recognition motifs as
well as kinase, phosphatase, and phospholipase enzymatic
activities. In particular, the 3-phosphorylated PtdInsPn lipids
have been implicated as activators of protein kinase C
isoforms and are messengers in cellular signal cascades
pertinent to inflammation, cell proliferation, transformation,
protein kinesis, and cytoskeletal assembly.1-3 PtdIns(3)P is
produced by the action of phosphoinositide-3-kinase (PI
3-K)1,4 on PtdIns, and its interactions with cognate binding
proteins, kinase, and phosphatases are important in cell
physiology. PtdIns(3)P specifically binds FYVE domains5-7
and is involved in phagocytosis,8 membrane trafficking, and
protein sorting.9 PX domains also recognize PtdIns(3)P, and
spatiotemporal changes mediate important aspects of cell
respiration.10 The myotubularin-related (MTMR) protein
family11 is comprised of PtdIns(3)P phosphatases that
contribute to lipid remodeling and are mutated in genetic
diseases.12
To gain deeper insight into these biological pathways,
selective reagents that can interfere with ligand binding,
inhibit enzyme activity, and activate protein-mediated lipid
signaling are needed.13 We recently described a general
approach to the synthesis of methylphosphonate, (mono-
fluoromethyl)phosphonate, and phosphorothioate analogues
(5) Kutateladze, T.; Ogburn, K.; Watson, W.; de Beer, T.; Emr, S.; Burd,
C.; Overduin, M. Mol. Cell 1999, 3, 805-811.
* To whom correspondence should be addressed. Phone: +1-801-585-
9051. Fax: +1-801-585-9053.
(6) Gaullier, J. M.; Simonsen, A.; D’Arrigo, A.; Bremnes, B.; Stenmark,
H.; Aasland, R. Nature 1998, 394, 432-433.
† The University of Utah.
‡ The University of Colorado Health Sciences Center.
(1) Vanhaesebroeck, B.; Leevers, S. J.; Ahmadi, K.; Timms, J.; Katso,
R.; Driscoll, P. C.; Woscholski, R.; Parker, P. J.; Waterfield, M. D. Annu.
ReV. Biochem. 2001, 70, 535-602.
(2) Yin, H. L.; Janmey, P. A. Annu. ReV. Physiol. 2003, 65, 761-789.
(3) Wymann, M. P.; Bjorklof, K.; Calvez, R.; Finan, P.; Thomas, M.;
Trifilieff, A.; Barbier, M.; Altruda, F.; Hirsch, E.; Laffargue, M. Biochem.
Soc. Trans. 2003, 31, 275-280.
(4) Anderson, K. E.; Jackson, S. P. Int. J. Biochem. Cell Biol. 2003, 35,
1028-1033.
(7) Kutateladze, T. BBA - Mol. Cell Biol. Lipids 2006, in press.
(8) Gillooly, D. J.; Simonsen, A.; Stenmark, H. J. Cell Biol. 2001, 155,
15-17.
(9) Petiot, A.; Faure, J.; Stenmark, H.; Gruenberg, J. J. Cell Biol. 2003,
162, 971-979.
(10) Sato, T.; Overduin, M.; Emr, S. D. Science 2001, 294, 1881-1885.
(11) Wishart, M. J.; Dixon, J. E. Trends Cell Biol. 2002, 12, 579-585.
(12) Laporte, J.; Bedez, F.; Bolino, A.; Mandel, J. L. Hum. Mol. Genet.
2003, 12, R285-R292.
(13) Prestwich, G. D. Chem. Biol. 2004, 11, 619-637.
10.1021/ol060903i CCC: $33.50
© 2006 American Chemical Society
Published on Web 05/24/2006