ACS Combinatorial Science
RESEARCH ARTICLE
(3) Barrett, A. G. M.; Roberts, R. S.; Schr€oder, J. Impurity Annihilation:
Chromatography-Free Parallel Mitsunobu Reactions. Org. Lett. 2000, 2,
2999–3001.
(21) Figlus, M.; Tarruella, A. C.; Messer, A.; Sollis, S. L.; Hartley,
R. C. Low Molecular Weight MPEG-assisted Organic Synthesis. Chem.
Commun. 2010, 46, 4405–4407.
(22) Low molecular weight MPEG has been used to tag intermedi-
ates in the solution-phase synthesis of oligosaccharides:(a) Hanashima,
S.; Inamori, K.; Manabe, S.; Taniguchi, N.; Ito, Y. Systematic Synthesis
of Bisubstrate-Type Inhibitors of N-Acetylglucosaminyltransferases.
Chem.—Eur. J. 2006, 12, 3449–3462. and references therein.(b) Jiang,
L.; Hartley, R. C.; Chan, T.-H. Use of Low Molecular Weight Poly-
ethylene Glycol Linker for Polymer-Supported Solution Synthesis of
Oligosaccharides. Chem. Commun. 1996, 2193–2194.
(23) A heavy MPEG version of this compound has recently been
reported and its silver complexes used in NMR studies: Bergbreiter, D. E.;
Yang, Y.-C. Variable-Temperature NMR Studies of Soluble Polymer-
Supported Phosphine-Silver Complexes. J. Org. Chem. 2010, 75, 873–878.
(24) Leeson, P. D.; Springthorpe, B. The Influence of Drug-like
Concepts on Decision-making in Medicinal Chemistry. Nature Rev.
Drug Discovery 2007, 6, 881–890.
(25) ClogP was calculated using Daylight clogP, version 4.81, Day-
light Chemical Information Systems, Inc., 28202 Cabot Road, Suite 300,
Laguna Niguel, CA 92677.
(26) Cooper, T. W. J.; Campbell, I. B.; Macdonald, S. J. F. Factors
Determining the Selection of Organic Reactions by Medicinal Chemists
and the Use of These Reactions in Arrays (Small Focused Libraries).
Angew. Chem., Int. Ed. 2010, 49, 8082–8091.
(4) Pelletier, J. C.; Kincaid, S. Mitsunobu Reaction Modifications
Allowing Product Isolation without Chromatography: Application to a
Small Parallel Library. Tetrahedron Lett. 2000, 41, 797–800.
(5) Lan, P.; Porco, J. A., Jr.; South, M. S.; Parlow, J. J. The
Development of a Chromatography-Free Mitsunobu Reaction: Synthe-
sis and Applications of an Anthracene-Tagged Phosphine Reagent.
J. Comb. Chem. 2003, 5, 660–669.
(6) Egelhaaf, H.-J.; Rademann, J. Understanding Supported Reac-
tions in Spherical Compartments: A General Algorithm To Model and
Determine Rate Constants, Diffusion Coefficients, and Spatial Product
Distributions. J. Comb. Chem. 2005, 7, 929–941.
(7) Czarnik, A. W. Solid-Phase Synthesis Supports Are Like Sol-
vents. Biotechnol. Bioeng. (Comb. Chem.) 1998, 61, 77–79.
(8) Chen, C. H.-T.; Zhang, W. Fluorous Reagents and Scavengers
Versus Solid-Supported Reagents and Scavengers, a Reaction Rate and
Kinetic Comparison. Mol. Diversity 2005, 9, 353–359.
(9) Hagiya, K.; Muramoto, N.; Misaki, T.; Sugimura, T. DMEAD: A
New Dialkyl Azodicarboxylate for the Mitsunobu Reaction. Tetrahedron
2009, 65, 6109–6114.
(10) Kiankarimi, M.; Lowe, R.; McCarthy, J. R.; Whitten, J. P.
Diphenyl 2-Pyridylphosphine and Di-tert-butyl Azodicarboxylate: Con-
venient Reagents for the Mitsunobu Reaction. Tetrahedron Lett. 1999,
40, 4497–4500.
(11) (a) Camp, D.; Jenkins, I. D. The Use of a Phosphine Containing
a Basic Group in the Mitsunobu Esterification Reaction. Aust. J.
Chem. 1988, 41, 1835–1839. (b) Von Itzstein, M.; Mocerino, M.
(27) Review: B€ohm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn,
B.; M€uller, K.; Obst-Sander, U.; Stahl, M. Fluorine in Medicinal
Chemistry. ChemBioChem. 2004, 5, 637–643.
(28) Handbook of Organopalladium Chemistry for Organic Synthesis;
Negishi, E.; Wiley: New York, 2002.
(p-Dimethylaminophenyl)diphenylphosphine:
A
More Practical
Phosphine in the Mitsunobu Reaction. Synth. Commun. 1990,
20, 2049–2057.
(12) Ginisty, M.; Roy, M.-N.; Charette, A. B. Tetraarylphospho-
nium-Supported Carbodiimide Reagents: Synthesis, Structure Optimi-
zation and Applications. J. Org. Chem. 2008, 73, 2542–2547.
(13) Sieber, F.; Wentworth, P.; Toker, J. D.; Wentworth, A. D.;
Metz, W. A.; Reed, N. N.; Janda, K. D. Development and Application of a
Poly(ethyleneglycol)-Supported Triarylphosphine Reagent: Expand-
ing the Sphere of Liquid-Phase Organic Synthesis. J. Org. Chem. 1999,
64, 5188–5192.
(14) Roller, S.; Zhou, H.; Haag, R. High-Loading Polyglycerol
Supported Reagents for Mitsunobu- And Acylation-Reactions
and Other Useful Polyglycerol Derivatives. Mol. Diversity 2005, 9,
305–316.
(15) Harned, A. M.; He, H. S.; Toy, P. H.; Flynn, D. L.; Hanson, P. R.
Multipolymer Solution-Phase Reactions: Application to the Mitsunobu
Reaction. J. Am. Chem. Soc. 2005, 127, 52–53.
(16) Maity, P. K.; Rolfe, A.; Samarakoon, T. B.; Faisal, S.; Kurtz,
R. D.; Long, T. R.; Sch€atz, A.; Flynn, D. L.; Grass, R. N.; Stark, W. J.;
Reiser, O.; Hanson, P. R. Monomer-on-Monomer (MoM) Mitsunobu
Reaction: Facile Purification Utilizing Surface-Initiated Sequestration.
Org. Lett. 2011, 13, 8–10.
(17) Dandapani, S.; Curran, D. P. Fluorous Mitsunobu Reagents and
Reactions. Tetrahedron 2002, 58, 3855–3864.
(18) Handbook of Fluorous Chemistry; Gladysz, J. A., Curran, D. P.,
Horvꢀath, I. T., Eds.; Wiley-VCH: Weinheim, Germany, 2004.
(19) Review of recent libraries including those using fluorous
synthesis and reagents: Dolle, R. E.; Le Bourdonnec, B.; Worm, K.;
Morales, G. A.; Thomas, C. J.; Zhang, W. Comprehensive Survey of
Chemical Libraries for Drug Discovery and Chemical Biology: 2009.
J. Comb. Chem. 2010, 12, 765–806.
(20) On the basis of the advertised price in dollars of 1 kg ofFluoroFlash
silica (40 μm particle size) from a specialist supplier of fluorous chemicals
and 1 kg of silica (35ꢀ70 μm particle size, 60 Å) from a supplier of fine
chemicals and chromatographic materials, both accessed online fourth
March 2011. Many research institutes and universities already buy silica
in bulk at a considerably lower cost.
285
dx.doi.org/10.1021/co100091n |ACS Comb. Sci. 2011, 13, 280–285