Article
Biochemistry, Vol. 49, No. 29, 2010 6081
ferredoxin-dependent bilin reductases from oxygenic photosynthetic
organisms. Plant Cell 13, 965–978.
7. Dammeyer, T., and Frankenberg-Dinkel, N. (2008) Function and
distribution of bilin biosynthesis enzymes in photosynthetic orga-
nisms. Photochem. Photobiol. Sci. 7, 1121–1130.
Hildebrandt, P., and Vierstra, R. D. (2009) Cyanochromes are blue/
green light photoreversible photoreceptors defined by a stable double
cysteine linkage to a phycoviolobilin-type chromophore. J. Biol.
Chem. 284, 29757–29772.
32. Hahn, J., Strauss, H. M., Landgraf, F. T., Gimenez, H. F., Lochnit,
G., Schmieder, P., and Hughes, J. (2006) Probing protein-chromophore
interactions in Cph1 phytochrome by mutagenesis. FEBS J. 273,
1415–1429.
8. Wegele, R., Tasler, R., Zeng, Y., Rivera, M., and Frankenberg-
Dinkel, N. (2004) The heme oxygenase(s)-phytochrome system of
Pseudomonas aeruginosa. J. Biol. Chem. 279, 45791–45802.
9. Montgomery, B. L., and Lagarias, J. C. (2002) Phytochrome ancestry.
Sensors of bilins and light. Trends Plant Sci. 7, 357–366.
10. Karniol, B., Wagner, J. R., Walker, J. M., and Vierstra, R. D.
(2005) Phylogenetic analysis of the phytochrome superfamily re-
veals distinct microbial subfamilies of photoreceptors. Biochem. J.
392, 103–116.
11. Lamola, A. A., Blumberg, W. E., McClead, R., and Fanaroff, A.
(1981) Photoisomerized bilirubin in blood from infants receiving
phototherapy. Proc. Natl. Acad. Sci. U.S.A. 78, 1882–1886.
12. McDonagh, A. F., Palms, L. A., Trull, F. R., and Lightner, D. A.
(1982) Phototherapy for neonatal jaundice. Configurational isomers
of bilirubin. J. Am. Chem. Soc. 104, 6865–6869.
33. von Stetten, D., Seibeck, S., Michael, N., Scheerer, P., Mroginski,
M. A., Murgida, D. H., Krauss, N., Heyn, M. P., Hildebrandt, P.,
Borucki, B., and Lamparter, T. (2007) Highly conserved residues Asp-
197 and His-250 in Agp1 phytochrome control the proton affinity of
the chromophore and Pfr formation. J. Biol. Chem. 282, 2116–2123.
34. Yang, X., Stojkovic, E. A., Kuk, J., and Moffat, K. (2007) Crystal
structure of the chromophore binding domain of an unusual bacterio-
phytochrome, RpBphP3, reveals residues that modulate photocon-
version. Proc. Natl. Acad. Sci. U.S.A. 104, 12571–12576.
35. Ikeuchi, M., and Ishizuka, T. (2008) Cyanobacteriochromes: A new
superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria.
Photochem. Photobiol. Sci. 7, 1159–1167.
36. Hanzawa, H., Inomata, K., Kinoshita, H., Kakiuchi, T., Jayasundera,
K. P., Sawamoto, D., Ohta, A., Uchida, K., Wada, K., and Furuya, M.
(2001) In vitro assembly of phytochrome B apoprotein with synthetic
analogs of the phytochrome chromophore. Proc. Natl. Acad. Sci. U.S.A.
98, 3612–3617.
37. Hanzawa, H., Shinomura, T., Inomata, K., Kakiuchi, T., Kinoshita,
H., Wada, K., and Furuya, M. (2002) Structural requirement of bilin
chromophore for the photosensory specificity of phytochromes A and
B. Proc. Natl. Acad. Sci. U.S.A. 99, 4725–4729.
13. Zunszain, P. A., Ghuman, J., McDonagh, A. F., and Curry, S. (2008)
Crystallographic analysis of human serum albumin complexed with
4Z,15E-bilirubin-IXR. J. Mol. Biol. 381, 394–406.
14. Kapitulnik, J. (2004) Bilirubin: An endogenous product of heme
degradation with both cytotoxic and cytoprotective properties. Mol.
Pharmacol. 66, 773–779.
15. Glazer, A. N. (1988) Phycobiliproteins. Methods Enzymol. 167,
291–303.
16. Scheer, H., and Zhao, K. H. (2008) Biliprotein maturation: The
chromophore attachment. Mol. Microbiol. 68, 263–276.
17. Rockwell, N. C., Su, Y. S., and Lagarias, J. C. (2006) Phytochrome
structure and signaling mechanisms. Annu. Rev. Plant Biol. 57, 837–858.
18. Giraud, E., and Vermeglio, A. (2008) Bacteriophytochromes in
anoxygenic photosynthetic bacteria. Photosynth. Res. 97, 141–153.
19. Rockwell, N. C., and Lagarias, J. C. (2010) A Brief History of
Phytochromes. ChemPhysChem 11, 1172–1180.
38. Inomata, K. (2008) Studies on the structure and function of phyto-
chromes as photoreceptors based on synthetic organic chemistry.
Bull. Chem. Soc. Jpn. 81, 25–59.
€
39. Bongards, C., and Gartner, W. (2010) The Role of the Chromo-
phore in the Biological Photoreceptor Phytochrome: An Approach
Using Chemically Synthesized Tetrapyrroles. Acc. Chem. Res. 43,
485–495.
20. Scheerer, P., Michael, N., Park, J. H., Nagano, S., Choe, H. W.,
Inomata, K., Borucki, B., Krauss, N., and Lamparter, T. (2010)
Light-induced conformational changes of the chromophore and the
protein in phytochromes: Bacterial phytochromes as model systems.
ChemPhysChem 11, 1090–1105.
40. Elich, T. D., and Lagarias, J. C. (1989) Formation of a photorever-
sible phycocyanobilin-apophytochrome adduct in vitro. J. Biol. Chem.
264, 12902–12908.
41. Elich, T. D., McDonagh, A. F., Palma, L. A., and Lagarias, J. C.
(1989) Phytochrome chromophore biosynthesis. Treatment of tetra-
pyrrole-deficient Avena explants with natural and non-natural bila-
trienes leads to formation of spectrally active holoproteins. J. Biol.
Chem. 264, 183–189.
42. Li, L., and Lagarias, J. C. (1992) Phytochrome assembly: Defining
chromophore structural requirements for covalent attachment and
photoreversibility. J. Biol. Chem. 267, 19204–19210.
43. Bhoo, S. H., Hirano, T., Jeong, H. Y., Lee, J. G., Furuya, M., and
Song, P. S. (1997) Phytochrome photochromism probed by site-
directed mutations and chromophore esterification. J. Am. Chem.
Soc. 119, 11717–11718.
21. Murphy, J. T., and Lagarias, J. C. (1997) The Phytofluors: A new class
of fluorescent protein probes. Curr. Biol. 7, 870–876.
22. Shimizu-Sato, S., Huq, E., Tepperman, J. M., and Quail, P. H. (2002)
A light-switchable gene promoter system. Nat. Biotechnol. 20, 1041–1044.
23. Fischer, A. J., and Lagarias, J. C. (2004) Harnessing phytochrome’s
glowing potential. Proc. Natl. Acad. Sci. U.S.A. 101, 17334–17339.
24. Su, Y. S., and Lagarias, J. C. (2007) Light independent phytochrome
signaling mediated by dominant GAF-domain tyrosine mutants of
Arabidopsis phytochromes in transgenic plants. Plant Cell 19, 2124–
2139.
25. Leung, D. W., Otomo, C., Chory, J., and Rosen, M. K. (2008)
Genetically encoded photoswitching of actin assembly through the
Cdc42-WASP-Arp2/3 complex pathway. Proc. Natl. Acad. Sci. U.S.A.
105, 12797–12802.
26. Shu, X., Royant, A., Lin, M. Z., Aguilera, T. A., Lev-Ram, V.,
Steinbach, P. A., and Tsien, R. Y. (2009) Mammalian expression of
infrared fluorescent proteins engineered from a bacterial phyto-
chrome. Science 324, 804–807.
44. Kami, C., Mukougawa, K., Muramoto, T., Yokota, A., Shinomura,
T., Lagarias, J. C., and Kohchi, T. (2004) Complementation of
phytochrome chromophore-deficient Arabidopsis by expression of
phycocyanobilin:ferredoxin oxidoreductase. Proc. Natl. Acad. Sci.
U.S.A. 101, 1099–1104.
45. Rockwell, N. C., Shang, L., Martin, S. S., and Lagarias, J. C. (2009)
Distinct classes of red/far-red photochemistry within the phyto-
chrome superfamily. Proc. Natl. Acad. Sci. U.S.A. 106, 6123–6127.
46. Ma, J. S., and Lightner, D. A. (1984) Facile Preparation of Symmetric
Bilirubins IIIR and XIIIR from IXR. J. Heterocycl. Chem. 21, 1005–
1008.
27. Levskaya, A., Weiner, O. D., Lim, W. A., and Voigt, C. A. (2009)
Spatiotemporal control of cell signalling using a light-switchable
protein interaction. Nature 461, 997–1001.
28. Fischer, A. J., Rockwell, N. C., Jang, A. Y., Ernst, L. A., Waggoner,
A. S., Duan, Y., Lei, H., and Lagarias, J. C. (2005) Multiple roles of a
conserved GAF domain tyrosine residue in cyanobacterial and plant
phytochromes. Biochemistry 44, 15203–15215.
29. Rockwell, N. C., Njuguna, S. L., Roberts, L., Castillo, E., Parson,
V. L., Dwojak, S., Lagarias, J. C., and Spiller, S. C. (2008) A second
conserved GAF domain cysteine is required for the blue/green photo-
reversibility of cyanobacteriochrome Tlr0924 from Thermosynecho-
coccus elongatus. Biochemistry 47, 7304–7316.
30. Wagner, J. R., Zhang, J., von Stetten, D., Gunther, M., Murgida,
D. H., Mroginski, M. A., Walker, J. M., Forest, K. T., Hildebrandt,
P., and Vierstra, R. D. (2008) Mutational analysis of Deinococcus
radiodurans bacteriophytochrome reveals key amino acids necessary
for the photochromicity and proton exchange cycle of phytochromes.
J. Biol. Chem. 283, 12212–12226.
47. McDonagh, A. F. (1979) Bile Pigments: Bilatrienes and 5,15-Bila-
dienes. In The Porphyrins (Dolphin, D., Ed.) pp 293-491, Academic
Press, New York.
48. Smith, P. K., Krohn, R. I., Hemanson, G. T., Mallia, A. K., Gartner,
F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olsen,
B. J., and Klenk, D. C. (1985) Measurement of Protein using
Bicinchoninic Acid. Anal. Biochem. 150, 76–85.
49. Bradford, M. M. (1976) A rapid and sensitive method for the
quantitation of microgram quantities of protein using the principle
of protein-dye binding. Anal. Biochem. 72, 248–254.
€
50. Lindner, I., Knipp, B., Braslavsky, S. E., Gartner, W., and Schaffner,
K. (1998) A novel chromophore selectively modifies the spectral
properties of one of the two stable states of the plant photoreceptor
phytochrome. Angew. Chem., Int. Ed. 37, 1843–1846.
51. Frankenberg, N., and Lagarias, J. C. (2003) Phycocyanobilin:ferre-
doxin oxidoreductase. Biochemical and spectroscopic characteriza-
tion. J. Biol. Chem. 278, 9219–9226.
31. Ulijasz, A. T., Cornilescu, G., von Stetten, D., Cornilescu, C.,
Velazquez Escobar, F., Zhang, J., Stankey, R. J., Rivera, M.,