1432 Chem. Res. Toxicol., Vol. 11, No. 12, 1998
Gallemann et al.
(13) Novak, M., and Rangappa, K. S. (1992) Nucleophilic substitution
on the ultimate hepatocarcinogen N-(sulfonatooxy)-2-(acetylami-
no)fluorene by aromatic amines. J . Org. Chem. 57, 1285-1290.
(14) Novak, M., Rangappa, K. S., and Manitsas, R. K. (1993) Nucleo-
philic aromatic substitution on ester derivatives of carcinogenic
N-arylhydroxamic acids by aniline and N,N-dimethylaniline. J .
Org. Chem. 58, 7813-7821.
(15) Gallemann, D., and Eyer, P. (1993) Effects of the phenacetin
metabolite 4-nitrosophenetol on glycolysis and pentose phosphate
pathway in human red cells. Biol. Chem. Hoppe-Seyler 374, 37-
49.
sulfenamide cations with other arylnitrenium ions. Since
the latter are well-known to be highly mutagenic, reac-
tions of sulfenamide cations with weak nucleophilic sites
of DNA (and proteins) have to be assumed as well.
Going over to the conditions in mammalian cells, GSH-
mediated activation of nitrosoarenes seems conceivable.
Nuclei are known to contain distinct amounts of GSH
(50-53), so that nitrosoarene molecules produced in the
vicinity of nuclei, e.g., by cellular peroxidases (54, 55),
may reach the DNA compartment and be activated to
the sulfenamide cation. Consequent detoxication reac-
tions with excess GSH and H2O should predominate, of
course (8). But, as indicated by the ring addition of weak
nucleophiles such as alcohol and water, reactions with
weak nucleophilic DNA bases have to be considered,
particularly in view of the high DNA concentrations
caused by compartmentation and the electrostatically
caused GSH-diminution around the DNA double strand
(56). In fact, mutagenic action of NOPt was suggested
to occur by an alternative activation pathway not using
the N-hydroxyarylamine-nitrenium ion route (19-21).
Among others, a GSH-mediated generation of the ulti-
mately reactive species has been supposed (21, 57), thus
fostering a sulfenamide cation mechanism.
(16) Gattermann, L., and Wieland, H. (1982) Die Praxis des organis-
chen Chemikers, Walter de Gruyter, Berlin.
(17) Gupta, R. L., Dey, D. K., and J uneja, T. R. (1985) Structure-
mutagenicity relationships within
a series of para-alkoxyni-
trosobenzenes. Toxicol. Lett. 28, 125-132.
(18) Gupta, R. L., Singh, M., and J uneja, T. R. (1987) Mutagenicity of
certain para substituted nitrosobenzenessa structure activity
relationship. Indian J . Exp. Biol. 25, 445-449.
(19) Wirth, P. J ., Alewood, P., Calder, I., and Thorgeirsson, S. S. (1982)
Mutagenicity of N-hydroxy-2-acetylaminofluorene and N-hydroxy-
phenacetin and their respective deacetylated metabolites in
nitroreductase deficient Salmonella TA98FR and TA100FR. Car-
cinogenesis 3, 167-170.
(20) Camus, A. M., Friesen, M., Croisy, A., and Bartsch, H. (1982)
Species-specific activation of phenacetin into bacterial mutagens
by hamster liver enzymes and identification of N-hydroxyphen-
acetin O-glucuronide as a promutagen in the urine. Cancer Res.
42, 3201-3208.
(21) McCoy, E. C., Rosenkranz, H. S., and Bartsch, H. (1986) Mutage-
nicity of the phenacetin metabolites: N-hydroxy-p-phenetidine
and nitrosophenetol in S. typhimurium TA100 and derivatives
deficient in nitroreductase or O-acetylase: probes for testing
intrabacterial metabolic activation. Mutat. Res. 173, 245-250.
(22) Talberg, H. J . (1979) X-ray structure and normal coordinate
analysis of p-nitrosoanisole. Acta Chem. Scand. A 33, 289-296.
(23) Bosch, E., and Kochi, J . K. (1994) Direct nitrosation of aromatic
hydrocarbons and ethers with the electrophilic nitrosonium cation.
J . Org. Chem. 59, 5573-5586.
(24) Eyer, P., and Ascherl, M. (1987) Reactions of para-substituted
nitrosobenzenes with human hemoglobin. Biol. Chem. Hoppe-
Seyler 368, 285-294.
(25) Klehr, H., Eyer, P., and Scha¨fer, W. (1985) On the mechanism of
reactions of nitrosoarenes with thiols. Formation of a common
intermediate “semimercaptal”. Biol. Chem. Hoppe-Seyler 366,
755-760.
(26) Hays, J . T., de Butts, E. H., and Young, H. L. (1967) p-
Nitrosophenol chemistry. I. Etherification of p-nitrosophenol. J .
Org. Chem. 32, 153-158.
(27) Renner, G. (1966) Mischkristallbildung aus 4-Nitrobiphenyl und
4-Nitrosobiphenyl. Naturwissenschaften 53, 381-382.
(28) Grimm, H., Gu¨nther, M., and Tittus, H. (1931) Z. Phys. Chem.
14, 169.
Ack n ow led gm en t. The financial support of the DFG
(Deutsche Forschungsgemeinschaft; AZ Ga 495/2-1) is
gratefully acknowledged.
Refer en ces
(1) Eyer, P., and Gallemann, D. (1996) Reactions of nitrosoarenes
with SH groups. In The Chemistry of Amino, Nitroso, Nitro and
Related Groups (Patai, S., Ed.) Vol. Suppl. F2, Part 2, pp 999-
1040, J ohn Wiley & Sons, Chichester.
(2) Kazanis, S., and McClelland, R. A. (1992) Electrophilic intermedi-
ate in the reaction of glutathione and nitrosoarenes. J . Am. Chem.
Soc. 114, 3052-3059.
(3) Diepold, C., Eyer, P., Kampffmeyer, H., and Reinhardt, K. (1982)
Reactions of aromatic nitroso compounds with thiols. In Biological
Reactive Intermediates: 2. Chemical Mechanisms and Biological
Effects (Snyder, R., Parke, V. D., Kocsis, J . J ., J ollow, D. J .,
Gibson, C. G., and Witmer, C. M., Eds.) pp 1173-1181, Plenum
Press, New York.
(4) Klehr, H., Eyer, P., and Scha¨fer, W. (1987) Formation of 4-ethoxy-
4′-nitrosodiphenylamine in the reaction of the phenacetin me-
tabolite 4-nitrosophenetol with glutathione. Biol. Chem. Hoppe-
Seyler 368, 895-902.
(5) Klehr, H., and Eyer, P. (1987) Reactions of p-nitrosophenetole with
thiols. Naunyn-Schmiedeberg’s Arch. Exp. Pathol. Pharmakol.
Su p p l. 335, R 12.
(6) Klehr, H. (1988) Zum Mechanismus der Reaktionen von Ni-
trosoaromaten mit Thiolen. Ph.D. Thesis, Ludwig-Maximilians-
Universita¨t, Mu¨nchen.
(7) Gallemann, D., and Eyer, P. (1994) Additional pathways of
S-conjugate formation during the interaction of thiols with
nitrosoarenes bearing π-donating substituents. Environ. Health
Perspect. 102, 137-142.
(8) Gallemann, D., Greif, A., Eyer, P., Wagner, H.-U., Sonnenbichler,
J ., Sonnenbichler, I., Scha¨fer, W., and Buhrow, I. (1998) Ad-
ditional pathways of S-conjugate formation during interaction of
4-nitrosophenetole with glutathione. Chem. Res. Toxicol. 11,
1411-1422.
(29) Norris, R. K., and Sternhell, S. (1966) N. M. R. spectra of “p-
nitrosophenol” and its methyl derivatives. Aust. J . Chem. 19,
841-860.
(30) Rosen, G. M., Rauckman, E. J ., Ellington, S. P., Dahlin, D. C.,
Christie, J . L., and Nelson, S. D. (1984) Reduction and glutathione
conjugation reactions of N-acetyl-p-benzoquinone imine and two
dimethylated analogues. Mol. Pharmacol. 25, 151-157.
(31) Fernando, C. R., Calder, I. C., and Ham, K. N. (1980) Studies on
the mechanism of toxicity of acetaminophen. Synthesis and
reactions of N-acetyl-2,6-dimethyl- and N-acetyl-3,5-dimethyl-p-
benzoquinone imines. J . Med. Chem. 23, 1153-1158.
(32) Du¨rckheimer, W., and Cohen, L. A. (1964) The oxidative conver-
sion of hydroquinone monophosphates to quinone ketals. Bio-
chemistry 3, 1948-1952.
(33) Novak, M., Kahley, M. J ., Lin, J ., Kennedy, S. A., and Swanegan,
L. A. (1994) Reactivity patterns of N-arylnitrenium ions: lack of
correlation with σ+. J . Am. Chem. Soc. 116, 11626-11627.
(34) Ellis, M. K., Hill, S., and Foster, P. M. D. (1992) Reactions of
nitrosonitrobenzenes with biological thiols: Identification and
reactivity of glutathion-S-yl conjugates. Chem.-Biol. Interact. 82,
151-163.
(9) Gassman, P. G., Campbell, G., and Frederick, R. (1968) Anilenium
ions. Intermediates in the nucleophilic substitution of anilines.
J . Am. Chem. Soc. 90, 7377-7378.
(10) Gassman, P. G., Campbell, G. A., and Frederick, R. C. (1972)
Nucleophilic aromatic substitution of anilines via aryl nitrenium
ions (anilenium ions). J . Am. Chem. Soc. 94, 3884-3891.
(11) Gassman, P. G., and Campbell, G. A. (1972) Thermal rearrange-
ment of N-chloroanilines. Evidence for the intermediacy of
nitrenium ions. J . Am. Chem. Soc. 94, 3891-3896.
(12) Helmick, J . S., Martin, K. A., Heinrich, J . L., and Novak, M. (1991)
Mechanism of the reaction of carbon and nitrogen nucleophiles
with the model carcinogens O-pivaloyl-N-arylhydroxylamines:
competing SN2 substitution and SN1 solvolysis. J . Am. Chem.
Soc. 113, 3459-3466.
(35) Koymans, L., van Lenthe, J . H., den Kelder, G. M. D., and
Vermeulen, N. P. E. (1989) Mechanism of activation of phenacetin
to reactive metabolites by cytochrome P-450: A theoretical study
involving radical intermediates. Mol. Pharmacol. 37, 452-460.
(36) Baillie, T. A., and Davis, M. R. (1993) Mass spectrometry in the
analysis of glutathione conjugates. Biomed. Mass Spectrom. 22,
319-325.
(37) Pearson, P. G., Threadgill, M. D., Howald, W. N., and Baillie, T.
A. (1988) Application of tandem mass spectrometry to the