Angewandte
Chemie
Keywords: asymmetric synthesis · natural products ·
.
phoslactomycins · phospholine · total synthesis
[1] a) S. Fushimi, S. Nishikawa, A. Shimazu, H. Seto, J. Antibiot.
1989, 42, 1019 – 1025; b) S. Fushimi, K. Furihata, H. Seto, J.
Antibiot. 1989, 42, 1026 – 1036.
[2] a) T. Ozasa, K. Suzuki, M. Sasamata, K. Tanaka, M. Kobori, S.
Kadota, K. Nagai, T. Saito, S. Watanabe, M. Iwanami, J. Antibiot.
1989, 42, 1331 – 1338; b) T. Ozasa, K. Tanaka, M. Sasamata, H.
Kaniwa, M. Shimizu, H. Matsumoto, M. Iwanami, J. Antibiot.
1989, 42, 1339 – 1343.
[15] a) V. S. Martin, S. S. Woodward, T. Katsuki, Y. Yamada, M.
Ikeda, K. B. Sharpless, J. Am. Chem. Soc. 1981, 103, 6237 – 6240;
b) T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc. 1980, 102,
5974 – 5976; c) Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H.
Masamune, K. B. Sharpless, J. Am. Chem. Soc. 1987, 109, 5765 –
5780.
[3] T. Shibata, S. Kurihara, K. Yoda, H. Haruyama, Tetrahedron
1995, 51, 11999 – 12012.
[4] T. Tomiya, M. Uramoto, K. Isono, J. Antibiot. 1990, 43, 118 – 121.
[5] a) T. Kohama, R. Enokita, T. Okazaki, H. Miyaoka, A. Torikata,
M. Inukai, I. Kaneko, T. Kagasaki, Y. Sakaida, A. Satoh, A.
Shiraishi, J. Antibiot. 1993, 46, 1503 – 1511; b) T. Kohama, T.
Nakamura, T. Kinoshita, I. Kaneko, A. Shiraishi, J. Antibiot.
1993, 46, 1512 – 1519.
[6] a) D. S. Lewy, C.-M. Gauss, D. R. Soenen, D. L. Boger, Curr.
Med. Chem. 2002, 9, 2005 – 2032; b) S. B. Buck, C. Hardouin, S.
Ichikawa, D. R. Soenen, C.-M. Gauss, I. Hwang, M. R. Swingle,
K. M. Bonness, R. E. Honkanen, D. L. Boger, J. Am. Chem. Soc.
2003, 125, 15694 – 15695.
[16] J. S. Yadav, P. K. Deshpande, G. V. M. Sharma, Tetrahedron
1990, 46, 7033 – 7046.
[17] A similar ketone with a TBS protecting group was synthesized
from diol 11 and converted into alcohol V as well. However,
subsequent protection with TESOTf produced a 3:1 mixture of
VI and VII (compare with 13!14 in Scheme 3).
[7] a) T. Usui, G. Marriott, M. Inagaki, G. Swarup, H. Osada, J.
Biochem. 1999, 125, 960 – 965; b) see Reference [6].
[8] T. Teruya, S. Simizu, N. Kanoh, H. Osada, FEBS Lett. 2005, 579,
2463 – 2468.
[9] N. Palaniappan, B. S. Kim, Y. Sekiyama, H. Osada, K. Reynolds,
J. Biol. Chem. 2003, 278, 35552 – 35557.
[10] K. Shimada, Y. Kaburagi, T. Fukuyama, J. Am. Chem. Soc. 2003,
125, 4048 – 4049. The total yield is 0.09% in 45 steps, except for
the manipulation on the cyclohexane ring.
=
=
[18] A similar reaction with CH2 CHLi (CH2 CHSnBu3, nBuLi)
afforded a mixture of products.
[19] Addition of the anion from (E)-ICH2 CHCH2OH (nBuLi then
=
MgBr2) also proceeded stereoselectively. However, this alter-
native was not adopted owing to the requirement of additional
steps for the stereoselective preparation of this alcohol from
propargyl alcohol in four steps: 1) CrO3, H+; 2) HI; 3) MeOH,
H+; 4) DIBAL-H.
[11] Reviews: a) see Reference [6]; b) M. Shibasaki, M. Kanai,
Heterocycles 2005, 66, 727 – 741.
[12] a) D. L. Boger, S. Ichikawa, W. Zhong, J. Am. Chem. Soc. 2001,
123, 4161 – 4167; b) J. Cossy, F. Pradaux, S. BouzBouz, Org. Lett.
2001, 3, 2233 – 2235; c) Y. K. Reddy, J. R. Falck, Org. Lett. 2002,
4, 969 – 971; d) D. E. Chavez, E. N. Jacobsen, Angew. Chem.
2001, 113, 3779 – 3782; Angew. Chem. Int. Ed. 2001, 40, 3667 –
3670; e) K. Miyashita, M. Ikejiri, H. Kawasaki, S. Maemura, T.
Imanishi, Chem. Commun. 2002, 742 – 743; K. Miyashita, M.
Ikejiri, H. Kawasaki, S. Maemura, T. Imanishi, J. Am. Chem. Soc.
2003, 125, 8238 – 8243; f) T. Esumi, N. Okamoto, S. Hatakeyama,
Chem. Commun. 2002, 3042 – 3043; g) Y.-G. Wang, Y. Kobaya-
shi, Org. Lett. 2002, 4, 4615 – 4618; h) K. Fujii, K. Maki, M.
Kanai, M. Shibasaki, Org. Lett. 2003, 5, 733 – 736; K. Maki, R.
Motoki, K. Fujii, M. Kanai, T. Kobayashi, S. Tamura, M.
Shibasaki, J. Am. Chem. Soc. 2005, 127, 17111 – 17117; i) B. M.
Trost, M. U. Frederiksen, J. P. N. Papillon, P. E. Harrington, S.
Shin, B. T. Shireman, J. Am. Chem. Soc. 2005, 127, 3666 – 3667.
[13] Ring-closing metathesis of I with the Grubbs catalysts (first- and
second-generation complexes) under various conditions was
unsuccessful.
[20] W. C. Still, J. H. McDonald III, Tetrahedron Lett. 1980, 21, 1031 –
1034.
[21] a) K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett.
1975, 16, 4467 – 4470; b) G. Just, B. OꢀConnor, Tetrahedron Lett.
1988, 29, 753 – 756.
[22] D. A. Evans, W. C. Black, J. Am. Chem. Soc. 1993, 115, 4497 –
4513.
[23] D. A. Evans, J. Bartroli, T. L. Shih, J. Am. Chem. Soc. 1981, 103,
2127 – 2129.
[24] M. H. P. J. Aerssens, R. van der Heiden, M. Heus, L. Brandsma,
Synth. Commun. 1990, 20, 3421 – 3425.
[25] a) J. C. Arnould, F. Landier, M. J. Pasquet, Tetrahedron Lett.
1992, 33, 7133 – 7136; b) O. Mitsunobu, Synthesis 1981, 1 – 28.
[26] J. W. Perich, R. B. Johns, Synthesis 1988, 142 – 146.
[27] a) O. Kanno, I. Kawamoto, Tetrahedron 2000, 56, 5639 – 5648;
b) I. Minami, Y. Ohashi, I. Shimizu, J. Tsuji, Tetrahedron Lett.
1985, 26, 2449 – 2452; c) Y. Hayakawa, S. Wakabayashi, T.
Nobori, R. Noyori, Tetrahedron Lett. 1987, 28, 2259 – 2262.
=
[28] Deprotection of a model compound, (allyl-O2C)2N(CH2)4OP(
O)(O-allyl)2, using HCO2H, Et3N, and a palladium catalyst
under standard conditions[27b,c] afforded the Et3N complex,
probably [H2N(CH2)4OP(O)(OH)(Oꢀ)](Et3NH+), even after
chromatography.
[14] Deprotection of TES ether III with AcCl (0.5 equiv) in MeOH
afforded a mixture of products, from which IV was isolated only
in 22% yield. Other conditions (Bu4NF, HF, HF·C5H5N) resulted
in decomposition.
Angew. Chem. Int. Ed. 2006, 45, 3320 –3323
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3323