Novel pyrazolo[5,1ꢀc][1,2,4]triazines
Russ.Chem.Bull., Int.Ed., Vol. 58, No. 5, May, 2009
1037
Scheme 5
molecule gives poorly soluble 7ꢀmethylꢀ4ꢀ(2ꢀoxopropyl)ꢀ
8ꢀphenylpyrazolo[5,1ꢀc][1,2,4]triazineꢀ3ꢀcarboxylic acid (15).
1
The H NMR spectrum of compound 15 shows douꢀ
blets at δ 3.05 and 3.24 for two methylene protons and an
unusual highꢀfield signal (δ 8.28) for the carboxyl proton.
Apparently, this upfield shift can be associated with the
magnetic anisotropy effect of the keto group.
Coupling of diazonium salt 2a with barbituric acids 6
gave brightly colored linear products in high yields
1
(Scheme 7). According to their H NMR spectra, they
exist as azo enols 17a,b rather than hydrazones 16a,b.
A single lowꢀfield signal at δ 14.40—14.60 was assigned8,10
to the NH proton of the pyrazole ring. A signal for the OH
group at δ 3.50—4.00 is greatly broadened because of
proton exchange.
In an attempted synthesis of pyrazolotriazines 18,
we obtained the following results. Heterocyclization
of 1,3ꢀdimethylꢀ5ꢀ[(3ꢀmethylꢀ4ꢀphenylꢀ1Hꢀpyrazolꢀ
5ꢀyl)diazenyl]pyrimidineꢀ2,4,6ꢀtrione (17b) failed under
various conditions. Such a behavior is due to the inertness
of amide carbonyl in cyclocondensation reactions. Howꢀ
ever, heating of azo compound 17a in polyphosphoric
acid (PPA) at 130—140 °C for many hours afforded the
11, 12: R = Me (a), Et (b)
acid with anhydrous sodium acetate) promotes recyclizaꢀ
tion of the lactone ring. Subsequent addition of a water
Table 2. 1H NMR spectra of pyrazolo[5,1ꢀc][1,2,4]triazines 9a—j, 10a—f, and 12a,b
Comꢀ
pound
δ
(J/Hz)
9a
1.18 (s, 6 H, 2 Me); 2.40 (t, 3 H, CH3CH2, J = 7.4); 2.75 (s, 2 H, CH2); 3.05 (q, 2 H, CH3CH2,
J = 7.7); 3.47 (s, 2 H, CH2); 7.44 (t, 1 H, H arom., J = 7.1); 7.58 (t, 2 H, H arom., J = 7.8);
7.88 (d, 2 H, H arom., J = 7.8)
9b
9с
9d
9e
9f
1.25 (s, 6 H, 2 Me); 2.72 (s, 3 H, Me); 2.78, 3.44 (both s, 2 H each, CH2); 7.51, 7.87
(both d, 2 H each, H arom., J = 8.3)
1.25 (s, 6 H, 2 Me); 2.71 (s, 3 H, Me); 2.80, 3.39 (both s, 2 H each, CH2); 7.08 (d, 1 H, H arom.,
J = 8.1); 7.26 (s, 1 H, H arom.); 7.45 (d, 1 H, H arom., J = 8.0); 8.00 (t, 1 H, H arom., J = 7.8)
1.24 (s, 6 H, 2 Me); 2.71 (s, 3 H, Me); 2.84, 3.70 (both s, 2 H each, CH2); 3.80 (s, 3 H, МеО);
7.02—7.17, 7.35—7.52 (both m, 2 H each, H arom.)
1.22 (s, 6 H, 2 Me); 2.70 (s, 3 H, Me); 2.72, 3.77 (both s, 2 H each, CH2); 3.85 (s, 3 H, МеО);
7.09, 7.76 (both d, 2 H each, H arom., J = 8.5)
1.25 (d, 3 H, Me, J = 6.2); 2.58 (d, 2 H, CH2, J = 6.9); 2.69 (s, 3 H, Me); 2.77 (s, 1 H, CH);
3.15, 3.79 (both q, 1 H each, CH, J = 6.7); 3.85 (s, 3 H, МеО); 7.10, 7.77 (both d, 2 H each, H arom., J = 8.5)
1.24 (d, 3 H, Me, J = 6.2); 2.63 (d, 2 H, CH2, J = 6.7); 2.82 (s, 1 H, CH); 3.16 (q, 1 H, CH,
J = 6.7); 3.49 (s, 3 H, MeОСH2); 3.79 (q, 1 H, CH, J = 6.7); 4.76 (s, 2 H, MeОСH2);
7.39—7.58 (m, 3 H, H arom.); 7.95 (d, 2 H, H arom., J = 7.8)
9g
9h
9i
2.83 (m, 1 H, CH); 2.89 (s, 3 H, MeОСH2); 3.34, 4.45 (both d, 2 H each, CH, J = 6.8);
4.73 (s, 2 H, MeОСH2); 7.40—8.00 (m, 10 H, H arom.)
2.69 (s, 3 H, Me); 2.73 (d, 2 H, CH2, J = 6.7); 2.82 (d, 1 H, CH, J = 6.8); 3.15 (q, 1 H, CH, J = 18.0);
3.70 (q, 1 H, CH, J = 18.1); 7.45—7.56 (m, 7 H, H arom.); 7.89 (d, 2 H, H arom., J = 7.3)
1.40 (t, 3 H, CH3CH2, J = 6.5); 2.90 (m, 1 H, CH); 3.09 (q, 2 H, CH3CH2, J = 7.8); 3.66—4.00
(m, 4 H, CH2); 6.80—7.80 (m, 9 H, H arom.); 9.55 (s, 1 H, ОH)
9j
10a
10b
10c
10d
10е
10f
2.68 (s, 3 H, Ме); 3.75, 3.83 (both s, 3 H each, МеО); 6.89—7.82 (m, 10 H, H arom.); 11.60 (br.s, 1 H, ОH)
3.50 (s, 3 H, МеО); 4.75 (s, 2 H, СH2); 7.12—8.01 (m, 8 H, H arom.); 11.49 (br.s, 1 H, ОH)
2.69 (s, 3 H, Ме); 3.77, 3.85 (both s, 3 H each, МеО); 6.78—7.93 (m, 9 H, H arom.); 11.45 (s, 1 H, ОH)
2.71 (s, 3 H, Ме); 6.76—7.82 (m, 11 H, H arom.); 9.52 (s, 1 H, C6H4ОH); 11.40 (br.s, 1 H, ОH)
2.40 (s, 3 H, Ме); 3.81 (s, 3 H, МеО); 6.98—7.90 (m, 11 H, H arom.); 11.55 (br.s, 1 H, ОH)
2.70 (s, 3 H, Ме); 7.40–7.85 (m, H arom.); 11.69 (br.s, 1 H, ОH)
12a
12b
2.80 (s, 3 H, Ме); 7.48—8.36 (m, 9 H, H arom.)
1.34 (t, 3 H, CH3CH2, J = 7.5); 2.81 (q, 2 H, CH3CH2, J = 7.8); 7.45—8.49 (m, 9 H, H arom.)