[40] A. Tabacaru, S. Galli, C. Pettinari, N. Masciocchi, T. M. McDonald,
J. R. Long, CrystEngComm 2015, 17, 4992.
[72] S. K. Henninger, F. P. Schmidt, H. M. Henning, Adsorption 2011, 17,
833.
[41] S. Galli, A. Maspero, C. Giacobbe, G. Palmisano, L. Nardo,
A. Comotti, I. Bassanetti, P. Sozzani, N. Masciocchi, J. Mater.
Chem. A 2014, 2, 12208.
[73] A drop of water laid down a pellet of lc-[Cu(BTB)(DMF)] occupies
all the available surface, precluding contact angle measurements
and suggesting a hydrophilic behaviour.
[42] V. Colombo, C. Montoro, A. Maspero, G. Palmisano, N. Masciocchi,
S. Galli, E. Barea, J. A. R. Navarro, J. Am. Chem. Soc. 2012, 134,
12830.
[43] E. Quartapelle Procopio, S. Rojas, N. M. Padial, S. Galli,
N. Masciocchi, F. Linares, D. Miguel, J. E. Oltra, J. A. R. Navarro,
E. Barea, Chem. Commun. 2011, 47, 11751.
[44] V. Colombo, S. Galli, H. J. Choi, G. D. Han, A. Maspero,
G. Palmisano, N. Masciocchi, J. R. Long, Chem. Sci. 2011, 2, 1311.
[45] I. Stassen, N. Burtch, A. Talin, P. Falcaro, M. Allendorf, R. Ameloot,
Chem. Soc. Rev. 2017, 46, 3185.
[46] M. Usman, S. Mendiratta, K.-L. Lu, ChemElectroChem 2015, 2, 786.
[47] M. D. Allendorf, A. Schwartzberg, V. Stavila, A. A. Talin, Chem. - Eur.
J. 2011, 17, 11372.
[48] M. Usman, Kuang-Lieh Lu, NPG Asia Mater. 2016, 8, e333.
[49] S. Mendiratta, M. Usman, K.-L. Lu, Coord. Chem. Rev. 2018, 360, 77.
[50] S. Eslava, L. Zhang, S. Esconjauregui, J. Yang, K. Vanstreels,
M. R. Baklanov, E. Saiz, Chem. Mater. 2013, 25, 27.
[51] M. Usman, C.-H. Lee, D.-S. Hung, S.-F. Lee, C.-C. Wang, T.-T. Luo,
L. Zhao, M.-K. Wu, K.-L. Lu, J. Mater. Chem. C 2014, 2, 3762.
[52] J. J. Low, A. I. Benin, P. Jakubczak, J. F. Abrahamian, S. A. Faheem,
R. R. Willis, J. Am. Chem. Soc. 2006, 131, 15835.
[74] N. M. Padial, E. Quartapelle Procopio, C. Montoro, E. López,
J. E. Oltra, V. Colombo, A. Maspero, N. Masciocchi, S. Galli,
I. Senkovska, S. Kaskel, E. Barea, J. A. R. Navarro, Angew. Chem.,
Int. Ed. 2013, 52, 8290.
[75] The dielectric constant of FMOF-1 is higher when pressed at
0.5 kbar than when pressed at 0.7 kbar, which is counterintuitive,
as high pressure reasonably causes a reduction in the air (κ;∼1)
volume contained in the pellet, which should increase κ;. This is
completely correct only when considering dry air for a material with
the same degree of crystallinity as a function of pressure. Despite
the nominal superhydrophobic behaviour of FMOF-1, ref. [37] has
shown by in situ vibrational spectroscopy that minute amounts
of non-hydrogen-bonded water (albeit undetectable by adsorption
isotherms, [38]nor GCMC simulations thereof [32]) are attached to
the FMOF-1 surface. Moreover, the phase purity of the material is
compromised upon increasing the applied pressure to attain an
increased admixture of amorphous material (Figure S19).
[76] In the case of FMOF-1, to obtain the corrected κ; values, the bulk
density of the crystalline phase, not that of the amorphous one, was
taken into consideration.
[77] K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo,
H. K. Chae, M. O’Keeffe, O. M. Yaghi, Proc. Natl. Acad. Sci. USA
2006, 103, 10186.
[53] L. Huang, H. Wang, J. Chen, Z. Wang, J. Sun, D. Zhao, Y. Yan,
Microporous Mesoporous Mater. 2003, 58, 105.
[54] J. A. Greathouse, M. D. Allendorf, J. Am. Chem. Soc. 2006, 128,
10679.
[78] K. Jayaramulu, K. K. R. Datta, C. Rçsler, M. Petr, Angew. Chem., Int.
Ed. 2016, 55, 1178.
[55] M. Dincaˇ, A. F. Yu, J. R. Long, J. Am. Chem. Soc. 2006, 128, 8904.
[56] A. Maspero, S. Galli, V. Colombo, G. Peli, N. Masciocchi, S. Stagni,
E. Barea, J. A. R. Navarro, Inorg. Chim. Acta 2009, 362, 4340.
[57] A. Maspero, S. Galli, N. Masciocchi, G. Palmisano, Chem. Lett.
2008, 37, 956.
[79] D. Bell, A. O. A. Eltoum, N. J. O’Reilly, A. E. Tipping, J. Fluorine
Chem. 1993, 64, 151.
[80] M. M. Abdul-Ghani, A. E. Tipping, J. Fluorine Chem. 1995, 72, 95.
[81] R. A. Young, The Rietveld Method, IUCr Monograph N. 5, Oxford
University Press, New York, USA, 1981.
[58] T.-H. Chen, I. Popov, W. Kaveevivitchai, Y.-C. Chuang, Y.-S. Chen,
A. J. Jacobson, O. Š. Miljanic´, Angew. Chem., Int. Ed. 2015, 54, 13902.
[59] Z. P. Demko, K. B. Sharpless, J. Org. Chem. 2001, 66, 7945.
[60] J. A. Joule, K. Mills, Heterocyclic Chemistry, 5th ed., Wiley-VCH,
Hoboken, NJ 2010.
[61] Estimated as the distance between the nearest fluorine atoms
decorating opposite walls, taking into consideration the van der
Waals radius of fluorine (S. S. Batsanov, Inorg. Mater. 2001, 37, 871).
[62] The empty volume was calculated with the software Platon
(A. L. Spek, Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009, 65, 148).
[63] W. M. Bloch, R. Babarao, M. R. Hill, C. J. Doonan, C. J. Sumby,
J. Am. Chem. Soc. 2013, 135, 10441.
[82] TOPAS-R, version 3.0, Bruker, Karlsruhe, Germany, 2005.
[83] For the rigid body describing the ligand, the following bond
distances and angles have been adopted: C-N, N-N of the penta-
atomic ring, 1.36 Å; C-C of the hexa-atomic ring, 1.39 Å; exocyclic
C-C, refined in the range 1.40–1.50 Å (retrieved from a search for
similar fragments within the 2019 update of the Cambridge Struc-
tural Database); C-F refined in the range 1.32–1.38 Å (retrieved
from a search for aromatic C-F bonds within the 2019 update of the
Cambridge Structural Database); penta-atomic ring internal bond
angles, 108°; penta-atomic ring external bond angles, 126°; hexa-
atomic ring bond angles, 120°. For the rigid body describing DMF,
the following bond distances and angles have been adopted: C-N,
1.40 Å; C-H, 0.95 Å; C-O, 1.25 Å; angles at the N and aldehydic C
atoms, 120°; angles at the methyl C atoms, 109.5°.
[64] Y. S. Bae, A. M. Spokoyny, O. K. Farha, R. Q. Snurr, J. T. Hupp,
C. A. Mirkin, Chem. Commun. 2010, 46, 3478.
[65] Y. Hu, W. M. Verdegaal, S. H. Yu, H. L. Jiang, ChemSusChem 2014,
7, 734.
[84] R. W. Cheary, A. A. Coelho, J. Appl. Crystallogr. 1992, 25, 109.
[85] P. W. Stephens, J. Appl. Crystallogr. 1999, 32, 281.
[66] Q. Yan, Y. Lin, C. Kong, L. Chen, Chem. Commun. 2013, 49, 6873.
[67] S. Henke, R. A. Fischer, J. Am. Chem. Soc. 2011, 133, 2064.
[68] Materials Studio v. 4.1, Biovia, San Diego, CA, USA.
[69] P. A. Kohl, Annu. Rev. Chem. Biomol. Eng. 2011, 2, 379.
[70] More in detail, in the same temperature range, the a-axis is
essentially unaffected by temperature increase, whereas the b- and
c-axis vary by –0.3% and 1.2%, with a consequent modification of
the aperture of the 1-D channels.
[86] G. W. Stinton, J. S. O. Evans, J. Appl. Crystallogr. 2007, 40, 87.
[87] S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc. 1938, 60,
309.
[88] “ImageJ.” National Institutes of Health, U.S. Department of Health
and Human Services, imagej.nih.gov/ij/ (accessed June 11th
2019).
[89] The obtained value of g, 1.4, is compatible with the formation of
platelets (T. Ida, Adv. Ceram. Res. Center Ann. Rep. 2013, 2, 7)
normal to the [101]direction upon pressing the material into pellets.
[90] W. A. Dollase, J. Appl. Crystallogr. 1986, 19, 267.
[71] The radius of the circumference inscribed in the rhombic channel
increases by ∼1%.
©
Adv. Funct. Mater. 2019, 1904707
1904707 (11 of 11)
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim