4390 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 14
Yan et al.
(17) Fozard, J. R.; McCarthy, C. Adenosine receptor ligands as potential
therapeutics in asthma. Curr. Opin. InVest. Drugs 2002, 3, 69-77.
(18) Trincavelli, M. L.; Marroni, M.; Tuscano, D.; Ceruti, S.; Mazzola,
A.; Mitro, N.; Abbracchio, M. P.; Martini, C. Regulation of A2B
adenosine receptor functioning by tumour necrosis factor R in human
astroglial cells. J. Neurochem. 2004, 91, 1180-1190.
(19) Holgate, S. T. The identification of the adenosine A2B receptor as a
novel therapeutic target in asthma. Br. J. Pharmacol. 2005, 145,
1009-1015.
(20) Fiebich, B. L.; Biber, K.; Gyufko, K.; Berger, M.; Bauer, J.; van
Calker, D. Adenosine A2B receptors mediate an increase in interleukin
(IL)-6 mRNA and IL-6 protein synthesis in human astroglioma cells.
J. Neurochem. 1996, 66, 1426-1431.
(21) Yan, L.; Mu¨ller, C. E. Preparation, properties, reactions, and
adenosine receptor affinities of sulfophenylxanthine nitrophenyl
esters: Toward the development of sulfonic acid prodrugs with
peroral bioavailability. J. Med. Chem. 2004, 47, 1031-1043.
(22) Carotti, A.; Cadavid, M. I.; Centeno, N. B.; Esteve, C.; Loza, M. I.;
Martinez, A.; Nieto, R.; Ravina, E.; Sanz, F.; Segarra, V.; Sotelo,
E.; Stefanachi, A.; Vidal, B. Design, synthesis, and structure-activity
relationships of 1-, 3-, 8-, and 9-substituted 9-deazaxanthines at the
human A2B adenosine receptor. J. Med. Chem. 2006, 49, 282-299.
(23) Carotti, A.; Stefaanchi, A.; Ravina, E.; Sotelo, E.; Loza, M. E.;
Cadavid, M. I.; Centeno, N. B.; Nicolotti, O. 8-Substituted 9-de-
azaxanthines as adenosine receptor ligands: Design, synthesis and
structure-activity relationships at A2B. Eur. J. Med. Chem. 2004,
39, 879-887.
in SYBYL running on default options. Minimization was terminated
either after 1000 iterations or when a gradient of less than 0.05
kcal/(mol‚Å) was attained. To find conformations with low energy,
the systematic search intergrated in SYBYL was performed. Partial
electrostatic potentials were calculated using the Gasteiger-Hu¨ckel
method. Low-energy conformations were used for calculations of
log P49 and PSA values50 with Marvin (www.chemaxon.com), while
only be performed using nonoptimized structures.
Acknowledgment. L.Y. was supported by a STIBET
scholarship by the Deutscher Akademischer Austauschdienst
(DAAD). We thank the Deutsche Forschungsgemeinschaft for
support (Grant GRK677, scholarships for D.C.G.B. and H.M.).
Supporting Information Available: 1H and 13C NMR spectral
data, elemental analyses, and HRMS data for the synthesized
compounds. This material is available free of charge via the Internet
References
(1) Abraham, D. J., Ed. Burger’s Medicinal Chemistry & Drug DiscoV-
ery; John Wiley and Sons: Hoboken, NJ, 2003.
(24) Webb, T. R.; Lvovskiy, D.; Kim, S. A.; Ji, X.; Melman, N.; Linden,
J.; Jacobson, K. A. Quinazolines as adenosine receptor antagonists:
SAR and selectivity for A2B receptors. Bioorg. Med. Chem. 2003,
11, 77-85.
(25) Pastorin, G.; Da Ros, T.; Spalluto, G.; Deflorian, F.; Moro, S.;
Cacciari, B.; Baraldi, P. G.; Gessi, S.; Varani, K.; Borea, P. A.
Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives as ad-
enosine receptor antagonists. Influence of the N5 substituent on the
affinity at the human A3 and A2B adenosine receptor subtypes: a
molecular modeling investigation. J. Med. Chem. 2003, 46, 4287-
4296.
(26) Kim, S.-A.; Marshall, M. A.; Melman, N.; Kim, H. S.; Mu¨ller, C.
E.; Linden, J.; Jacobson, K. A. Structure-activity relationships at
human and rat A2B adenosine receptors of xanthine derivatives
substituted at the 1-, 3-, 7-, and 8-positions. J. Med. Chem. 2002,
45, 2131-2138.
(27) Varani, K.; Gessi, S.; Merighi, S.; Vincenzi, F.; Cattabriga, E.; Benini,
A.; Klotz, K.-N.; Baraldi, P. G.; Tabrizi, M. A.; MacLennan, S.;
Leung, E.; Borea, P. A. Pharmacological characterization of novel
adenosine ligands in recombinant and native human A2B receptors.
Biochem. Pharmacol. 2005, 70, 1601-1612.
(2) Wu, C.; Decker, E. R.; Holland, G. W.; Brown, F. D.; Stavros, F.
D.; Brock, T. A.; Dixon, R. A. C. Nonpeptide endothelin antagonists
in clinical development. Drugs Today 2001, 37, 441-453.
(3) De Clercq, E. New developments in anti-HIV chemotherapy. Curr.
Med. Chem. 2001, 8, 1543-1572.
(4) Rotella, D. P. Phosphodiesterase 5 inhibitors: Current status and
potential applications. Nat. ReV. Drug DiscoVery 2002, 1, 674-682.
(5) Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo, R. M.; Freidinger,
R. M.; Whitter, W. L.; Lundell, G. F.; Veber, D. F.; Anderson, P.
S.; Chang, R. S.; Lotti, V. J.; Cerino, D. J.; Chen, T. B.; Kling, P. J.;
Kunkerl, K. A.; Springer, J. P.; Hirshfield, J. Methods for drug
discovery: Development of potent, selective, orally effective chole-
cystokinin antagonists. J. Med. Chem. 1988, 31, 2235-2246.
(6) Mu¨ller, C. E.; Stein, B. Adenosine receptor antagonists: Structures
and potential therapeutic applications. Curr. Pharm. Des. 1996, 2,
501-530.
(7) Daly, J. W.; Padgett, W.; Shamin, M. T.; Butts-Lamb, P.; Waters, J.
1,3-Dialkyl-8-(p-sulfophenyl)xanthines: Potent water-soluble an-
tagonists for A1- and A2-adenosine receptors. J. Med. Chem. 1985,
28, 487-492.
(8) Hamilton, H. W.; Ortwine, D. F.; Worth, D. F.; Badger, E. W.; Bristol,
J. A.; Bruns, R. F.; Haleen, S. J.; Steffen, R. P. Synthesis of xanthines
as adenosine antagonists, a practical quantitative structure-activity
relationship application. J. Med. Chem. 1985, 28, 1071-1079.
(9) Mu¨ller, C. E.; Sandoval-Ram´ırez, J.; Schobert, U.; Geis, U.;
Frobenius, W.; Klotz, K. N. 8-(Sulfostyryl)xanthines: Water-soluble
(28) Baraldi, P. G.; Tabrizi, M. A.; Preti, D.; Bovero, A.; Romagnoli, R.;
Fruttarolo, F.; Zaid, N. A.; Moorman, A. R.; Varani, K.; Gessi, S.;
Merighi, S.; Borea, P. A. Design, synthesis, and biological evaluation
of new 8-heterocyclic xanthine derivatives as highly potent and
selective human A2B adenosine receptor antagonists. J. Med. Chem.
2004, 47, 1434-1447.
A2A-selective adenosine receptor antagonists. Bioorg. Med. Chem.
1998, 6, 707-719.
(29) Zablocki, J.; Kalla, R.; Perry, T.; Palle, V.; Varkhedkar, V.; Xiao,
D.; Piscopio, A.; Maa, T.; Gimbel, A.; Hao, J.; Chu, N.; Leung, K.;
Zeng, D. The discovery of a selective, high affinity A2B adenosine
receptor antagonist for the potential treatment of asthma. Bioorg. Med.
Chem. Lett. 2005, 15, 609-612.
(10) Hayallah, A. M.; Sandoval-Ramirez, J.; Reith, U.; Schobert, U.;
Preiss, B.; Schumacher, B.; Daly, J. W.; Mu¨ller, C. E. 1,8-
Disubstituted xanthine derivatives: Synthesis of potent A2B-selective
adenosine receptor antagonists. J. Med. Chem. 2002, 45, 1500-1510.
(11) Abo-Salem, O. M.; Hayallah, A. M.; Bilkei-Gorzo, A.; Filipek, B.;
Zimmer, A.; Mu¨ller, C. E. Antinociceptive effects of novel A2B
adenosine receptor antagonists. J. Pharmacol. Exp. Ther. 2004, 308,
358-366.
(30) Smith, M. B., Ed. March’s AdVanced Organic Chemistry; John Wiley
and Sons Inc.: New York, 2001.
(31) Baraldi, P. G.; Cacciari, B.; Moro, S.; Romagnoli, R.; Ji, X. D.;
Jacobson, K. A.; Gessi, S.; Borea, P. A.; Spalluto, G. J. Fluorosul-
fonyl- and bis-(â-chloroethyl)amino-phenylamino functionalized
pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives: Irrevers-
ible antagonists at the human A3 adenosine receptor and molecular
modeling studies. J. Med. Chem. 2001, 44, 2735-2742.
(32) Decat, A.; Pouke, R. V.; Verbrugghe, M. J. Sulfonyl fluorides as
intermediates in organic synthesis. II. Synthesis and alkaline hy-
drolysis of 2-(acylacetyl)aminothiazoles containing fluorosulfonyl
substituents. J. Org. Chem. 1965, 30, 1498-1502.
(33) Kruse, C. H.; Holden, K. G.; Pritchard, M. L.; Field, J. A.; Rieman,
D. J.; Grieg, R. G.; Poste, G. Synthesis and evaluation of multisub-
strate inhibitors of an oncogene-encoded tyrosine-specific protein
kinase. 1. J. Med. Chem. 1988, 31, 1762-1767.
(34) Hanna, N. B.; Dimitrijevich, S. D.; Larson, S. B.; Robins, R. K.;
Revankar, G. R. Synthesis and single-crystal X-ray diffraction studies
of 1-â-D-ribofuarnosyl-1,2,4-triazole-3-sulfonamide and certain re-
lated nucleosides. J. Heterocycl. Chem. 1988, 25, 1857-1868.
(35) Choi, J. H.; Lee, B. C.; Lee, H. W.; Lee, I. Head-to-backbone
cyclization of peptides on solid support by nucleophilic aromatic
substitution. J. Org. Chem. 2002, 67, 1277-1281.
(12) Volpini, R.; Costanzi, S.; Vittori, S.; Cristalli, G.; Klotz, K.-N.
Medicinal chemistry and pharmacology of A2B adenosine receptors.
Curr. Top. Med. Chem. 2003, 3, 427-443.
(13) Cacciari, B.; Pastorin, G.; Bolcato, C.; Spalluto, G.; Bacilieri, M.;
Moro, S. A2B Adenosine receptor antagonists: Recent developments.
Mini-ReV. Med. Chem. 2005, 5, 499-505.
(14) Zhong, H.; Belardinelli, L.; Maa, T.; Feoktistov, I.; Biaggioni, I.;
Zeng, D. A2b Adenosine receptors increase cytokine release by
bronchial smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 2004,
30, 118-125.
(15) Link, J. T. Pharmacological regulation of hepatic glucose production.
Curr. Opin. InVest. Drugs 2003, 4, 421-429.
(16) Harada, H.; Asano, O.; Hoshino, Y.; Yoshikawa, S.; Matsukura, M.;
Kabasawa, Y.; Nijima, J.; Kotake, Y.; Watanabe, N.; Kawata, T.;
Inoue, T.; Horizoe, T.; Yasuda, N.; Minami, H.; Nagata, K.;
Murakami, M.; Nagaoka, J.; Kobayashi, S.; Tanaka, I.; Abe, S.
2-Alkynyl-8-aryl-9-methyladenines as novel adenosine receptor
antagonists: Their synthesis and structure-activity relationships
toward hepatic glucose production induced via agonism of the A2B
receptor. J. Med. Chem. 2001, 44, 170-179.