Fig. 2 Biological activity of the biotin-linked Thalidomide analogue (13) compared to (R,S)-Thalidomide (1).
a biotin fragment (13) to the piperidine ring does not significantly
affect the biological activity of Thalidomide (1).
Reviews Of Immunology, 2008, 27, 111; (d) R. Garc´ıa-Sanz, Expert
Opin. Pharmacother., 2006, 7, 195.
7 (a) S. Niwayama, C. Loh, B. E. Turk, J. O. Liu, H. Miyachi and Y.
Hashimoto, Bioorg. Med. Chem. Lett., 1998, 8, 1071; (b) M. Melchert
and A. List, Int. J. Biochem. Cell Biol., 2007, 39, 1489–1499.
8 J. Keifer, D. C. Guttridge, B. P. Ashburner and A. S. Baldwin, J. Biol.
Chem., 2001, 276, 22382.
In conclusion, we have devised a short elegant route to a
biotin derived Thalidomide analogue 13. In this four step process
we have used the a novel diazotransfer reagent to generate the
biotin-azide fragment and a Huisgen 1,3-dipolar cycloaddition or
click chemistry as the key reaction. Given that the production
of 13 as a putative activity-based probe is viable it gives us
the opportunity to investigate the localisation of Thalidomide
and thus identify, in principle, this molecules cellular targets.
Using fluorescein isothiocyanate (FITC)-conjugated streptavidin
and confocal microscopy we envisage that we will visualise the
cellular location of 13 and thus give insight into Thalidomide’s (1)
mode of action. What is also of interest to us, and currently under
development, is an analogue of 13 incorporating a photoaffinity
label.22 Molecules such as these6a,23 could be used in conjunction
with streptavidin affinity-based chromatography24 to elucidate
whether Thalidomide (1) has multiple cellular targets.
9 S. G. Stewart, C. J. Braun, S-L. Ng, M. E. Polomska, M. Karimi and
L. J. Abraham, Bioorg. Med. Chem., 2010, 18, 650.
10 S. G. Stewart, D. Spagnolo, M. E. Polomska, M. Sin, M. Karimi and
L. J. Abraham, Bioorg. Med. Chem. Lett., 2007, 17, 5819.
11 (a) G. W. Muller, R. Chen, S. Huang, L. G. Corral, L. Wong, R. T.
Patterson, Y. Chen, G. Kaplan and D. I. Stirling, Bioorg. Med. Chem.
Lett., 1999, 9, 1625; (b) J. B. Marriott, G. W. Muller, D. Stirling and
A. G. Dalgleish, Expert Opin. Biol. Ther., 2001, 1, 675.
12 (a) Y. Hashimoto, Arch. Pharm., 2008, 341, 536; (b) T. Nakamura, T.
Noguchi, H. Kobayashi, H. Miyachi and Y. Hashimoto, Chem. Pharm.
Bull., 2006, 54, 1709.
13 (a) R. Huisgen, 1,3-Dipolar Cycloaddition ChemistryA Padwa, Ed.;
Wiley, New York, New York, 1984; pp 1–176; (b) V. V. Rostovtsev,
L. G. Green, V. V. Fokin and K. B. Sharpless, Angew. Chem., Int. Ed.,
2002, 41, 2596; (c) S. N. Lam, P. Acharya, R. Wyatt, P. D. Kwong and
C. A. Bewley, Bioorg. Med. Chem., 2008, 16, 10113; (d) R. Huisgen,
Angew. Chem. Int. Ed., 1963, 75, 604; (e) W. G. Lewis, L. G. Green,
F. Grynszpan, Z. Radicacute, P. R. Carlier, P. Taylor, M. G. Finn and
K. B. Sharpless, Angew. Chem. Int. Ed., 2002, 41, 1053; (f) C. W. Tornoe,
C. Christensen and M. Meldal, J. Org. Chem., 2002, 67, 3057.
14 S. Hess, M. A. Ackermann, S. Wnendt, K. Zwingenberger and K. Eger,
Bioorg. Med. Chem., 2001, 9, 1279.
Acknowledgements
The Authors would like to thank the Cancer Council of Western
Australia for the award of a Cancer Council Grant. The authors
would also like to thank Dr Lindsay Byrne for NMR assistance
and Dr Tony Reeder for mass spectra acquisition.
15 D. S. Wilbur, D. K. Hamlin, R. L Vessella, J. E. Stray, K. R. Buhler,
P. S. Stayton, L. A. Klumb, P. M. Pathare and S. A. Weerawarna,
Bioconjugate Chem., 1996, 7, 689.
16 K. A. Stubbs, A. Scaffidi, A. W. Debowski, B. L. Mark, R. V. Stick and
D. J. Vocadlo, J. Am. Chem. Soc., 2008, 130, 327.
17 A. J. Link and D. A. Tirrell, J. Am. Chem. Soc., 2003, 125, 11164.
18 A. J. Link, M. K. S. Vink, N. J. Agard, J. A. Prescher, C. R. Bertozzi
and D. A. Tirrell, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 10180.
19 S. J. Williams, O. Hekmat and S. G. Withers, ChemBioChem, 2006, 7,
116.
20 E. D. Goddard-Borger and R. V. Stick, Org. Lett., 2007, 9, 3797.
21 C. K. Chang, S. Llanes and W. Schumer, J. Surg. Res., 1999, 82, 294.
22 T. Kan, Y. Tominari, Y. Morohashi, H. Natsugari, T. Tomita, T.
Iwatsubo and T. Fukuyama, Chem. Commun., 2003, 2244.
23 S. M. Capitosi, T. P. Hansen and M. L. Brown, Org. Lett., 2003, 5,
2865.
References
1 R. Brynner, T. Stephens, Dark Remedy, The impact of thalidomide and
its revival as a vital medicine; Perseus New York, NY, 2001.
2 D. Ribatti and A. Vacca, Leukemia, 2005, 19, 1525.
3 J. B. Bartlett, K. Dredge and A. G. Dalgleish, Nat. Rev. Cancer, 2004,
4, 314.
5 (a) S-C. Mei and R-T. Wu, Mol. Cancer Ther., 2008, 7, 2405; (b) H.
Sano, T. Noguchi, A. Tanatani, Y. Hashimoto and H. Miyachi, Bioorg.
Med. Chem., 2005, 13, 3079; (c) C. Meierhofer, S. Dunzendorfer and
C. J. Wiedermann, J. Infect. Dis., 1999, 180, 216.
6 (a) B. E. Turk, H. Jiang and J. O. Lu, Proc. Natl. Acad. Sci. U. S. A.,
1996, 93, 7552; (b) C. Meierhofer, S. Dunzendorfer and C. Wiedermann,
BioDrugs, 2001, 15, 681; (c) T. Paravar and D. J. Lee, International
24 (a) T. V. Updyke and G. L. Nicolson, J. Immunol. Methods, 1984, 73,
83; (b) J. Buckie and W. G. M. W. Cook, Anal. Biochem., 1986, 156,
463.
4062 | Org. Biomol. Chem., 2010, 8, 4059–4062
This journal is
The Royal Society of Chemistry 2010
©