Steric Constraints from Multiple Bridging in ex-TTF
A R T I C L E S
solvent and the substituents).5 This redox process, which is
electrochemically quasi-reversible and chemically reversible, is
accompanied by a remarkable conformational change,6 as shown
by X-ray crystallographic studies.7 The neutral molecules 1
possess a saddle-shaped structure comprising a concave cavity
and a strongly folded anthracenediylidene unit, imposed by steric
hindrance from the benzoannulated quinoid moiety. In contrast,
in the dications 12+, the anthracene ring system becomes planar
and aromatic, with bond lengths similar to those of anthracene
itself, and the heteroaromatic 1,3-dithiolium cations are almost
orthogonal to this plane. Theoretical studies support the
experimental evidence that the two, one-electron oxidations of
1 coalesce under the same oxidation wave, with the dication
possessing decreased intramolecular on-site Coulombic repulsion
compared to TTF.8 The radical cation of system 1 is a transient
species which has been generated by flash photolysis9 and pulse
radiolysis.10 This remarkable interplay of redox and conforma-
tional properties has led to derivatives of 1 being employed as
components of charge-transfer salts,7,11 nonlinear optical materi-
als,12 multi-stage redox assemblies,13 dimeric ex-TTFs,14 highly
charged dendrimers,15 and donor-acceptor systems for studies
of charge-separated excited states.16
observed at significantly higher potentials (+200-300 mV)
compared to their nonbridged precursors, unlike 3b, where the
longer bridge had essentially no effect on the oxidation potential.
Bridging the anthracene unit had less effect (4a, +50 mV; 4b,
unchanged) compared to their nonbridged precursors.20
The aim of the present work was to synthesize ex-TTF
derivatives which would be sterically constrained to such an
extent that they could not undergo any significant conforma-
tional change upon oxidation. We were fascinated by the
possibility that, if the central anthracenediylidene ring was forced
to retain the strongly folded (neutral) geometry upon oxidation,
and hence could not aromatize, then the single, two-electron
oxidation process (D0 f D2+) might be replaced by two
sequential, one-electron steps (D0 f D•+ f D2+) with an
observable (or even stable) radical cation. We now report the
synthesis of the first doubly and triply bridged ex-TTF cyclo-
phanes and describe the fascinating structural and electronic
consequences of this unprecedented rigidification of the π-frame-
work.
Results and Discussion
Synthesis. Our initial targets were analogues of 2 doubly
bridged across the two dithiole rings. The previous synthesis
of 2a and 2b had been achieved in low yields (22% and 10%,
respectively) by a two-fold Horner-Wadsworth-Emmons
reaction of the corresponding bis(1,3-dithiol-2-yl)phosphonate
reagent with anthraquinone.18 Cyclophanes 319 and 420 had been
obtained by a different and more efficient strategy, viz., bridging
a preformed ex-TTF system in macrolactonization reactions. For
precursors to doubly bridged analogues, we chose ex-TTF
derivatives bearing suitable functionality to undergo two in-
tramolecular cyclization reactions. Compounds 13 and 14, with
two protected thiolates and two alkyl iodide chains, seemed ideal
candidates: the short pentamethylenedithio and tetramethyl-
enedithio bridges which would form by intramolecular nucleo-
philic displacement of the iodides should ensure that only the
cis/cis isomer would form in each case; the “criss-cross” trans/
trans isomers would be too strained.
The structures and properties of aromatic molecules can be
manipulated by applying steric constraints, e.g., by incorporation
into cyclophane structures.17 The electron donor properties of
the ex-TTF system 1 have been modified in cyclophane
derivatives where the linkers are short enough to restrict the
conformational change which accompanies the oxidation to the
dication. Thus, for systems 2a,b18 and 3a,19 the characteristic
D0 f D2+ oxidation wave in the cyclic voltammogram was
(5) (a) Yamashita, Y.; Kobayashi, Y.; Miyashi, T. Angew. Chem., Int. Ed. Engl.
1989, 28, 1052-1053. (b) Moore, A. J.; Bryce, M. R. J. Chem. Soc., Perkin
Trans. 1 1991, 157-168. (c) Bryce, M. R.; Coffin, M. A.; Hursthouse, M.
B.; Karaulov, A. I.; Mu¨llen, K.; Scheich, H. Tetrahedron Lett. 1991, 32,
6029-6032. (d) Liu, S.-G.; Pe´rez, I.; Mart´ın, N.; Echegoyen, L. J. Org.
Chem. 2000, 65, 9092-9102. (e) Liu, S.-G.; Pe´rez, I.; Mart´ın, N.;
Echegoyen, L. J. Org. Chem. 2000, 65, 9092-9102.
(6) For other molecular systems where significant conformational changes are
triggered by electron transfer, see: (a) Boubekeur, K.; Lenoir, C.; Batail,
P.; Carlier, R.; Tallec, A.; Le Paillard, M.-P.; Lorcy, D.; Robert, A. Angew.
Chem., Int. Ed. Engl. 1994, 33, 1379-1381. (b) Guerro, M.; Carlier, R.;
Boubekeur, K.; Lorcy, D.; Hapiot, P. J. Am. Chem. Soc. 2003, 125, 3159-
3167 and references therein. (c) Nygaard, S.; Laursen, B. W.; Flood, A.
H.; Hansen, C. N.; Jeppesen, J. O.; Stoddart, J. F. Chem. Commun. 2006,
144-146.
However, since no methodology existed for the synthesis of
ex-TTF derivatives bearing cyanoethyl-protected thiolates, we
modified the protocol for phosphite-mediated coupling of 1,3-
dithiole-2-chalcogenones commonly used for the synthesis of
cyanoethyl-protected TTF thiolates.21 Although the cross-
coupling reactions of anthraquinone or anthrone derivatives with
(7) Bryce, M. R.; Moore, A. J.; Hasan, M.; Ashwell, G. J.; Fraser, A. T.; Clegg,
W.; Hursthouse, M. B.; Karaulov, A. I. Angew. Chem., Int. Ed. Engl. 1990,
29, 1450-1452.
(8) Mart´ın, N.; Sa´nchez, L.; Seoane, C.; Ort´ı, E.; Viruela, P. M.; Viruela, R.
J. Org. Chem. 1998, 63, 1268-1279.
(9) Jones, A. E.; Christensen, C. A.; Perepichka, D. F.; Batsanov, A. S.; Beeby,
A.; Low, P. J.; Bryce, M. R.; Parker, A. W. Chem. Eur. J. 2001, 7, 973-
978.
(16) (a) Herranz, M. A.; Mart´ın, N.; Ramey, J.; Guldi, D. M. Chem. Commun.
2002, 2968-2968. (b) Kodis, G.; Liddell, P. A.; de la Garza, L.; Moore,
A. L.; Moore, T. A.; Gust, D. J. Mater. Chem. 2002, 12, 2100-2108. (c)
Gonza´lez, S.; Mart´ın, N.; Swartz, A.; Guldi, D. M. Org. Lett. 2003, 5,
557-560. (d) D´ıaz, M. C.; Herranz, M. A.; Illescas, B. M.; Mart´ın, N.;
Godbert, N.; Bryce, M. R.; Luo, Ch.; Swartz, A.; Anderson, G.; Guldi, D.
M. J. Org. Chem. 2003, 68, 7711-7721. (e) Perepichka, D. F.; Bryce, M.
R.; Perepichka, I. F.; Lyubchik, S. B.; Christensen, C. A.; Godbert, N.;
Batsanov, A. S.; Levillain, E.; McInnes, E. J. L.; Zhao, J. P. J. Am. Chem.
Soc. 2002, 124, 14227-14238. (f) Giacalone, F.; Segura, J. L.; Mart´ın,
N.; Guldi, D. M. J. Am. Chem. Soc. 2004, 126, 5340-5341. (g) Giacalone,
F.; Segura, J. L.; Mart´ın, N.; Ramey, G.; Guldi, D. M. Chem. Eur. J. 2005,
11, 4819-4834.
(10) (a) Mart´ın, N.; Sa´nchez, L.; Guldi, D. M. Chem. Commun. 2000, 113-
114. (b) Guldi, D. M.; Sa´nchez, L.; Mart´ın, N. J. Phys. Chem. B 2001,
105, 7139-7144.
(11) (a) Triki, S.; Ouahab, L.; Lorcy, D.; Robert, A. Acta Crystallogr. 1993,
C49, 1189-1192. (b) Batsanov, A. S.; Bryce, M. R.; Lyubchik, S. B.;
Perepichka, I. F. Acta Crystallogr. 2002, E58, o1106-o1110.
(12) (a) Otero, M.; Herranz, M. A.; Seoane, C.; Mart´ın, N.; Gar´ın, J.; Orduna,
J.; Alacala´, R.; Villacampa, B. Tetrahedron 2002, 58, 7463-7475. (b)
Insuasti, B.; Atienza, C.; Seoane, C.; Mart´ın, N.; Gar´ın, J.; Orduna, J.;
Alacala´, R.; Villacampa, B. J. Org. Chem. 2004, 69, 6986-6995.
(13) (a) Cerrada, E.; Bryce, M. R.; Moore, A. J. J. Chem. Soc., Perkin Trans.
1 1993, 537-538. (b) Marshallsay, G. J.; Bryce, M. R. J. Org. Chem. 1994,
59, 6847-6850. (c) Gautier, N.; Mercier, N.; Riou, A.; Gorgues, A.
Hudhomme, P. Tetrahedron Lett. 1998, 40, 5997-6000.
(17) (a) Diederich, F. Cyclophanes; Royal Society of Chemistry: Cambridge,
1991. (b) Vo¨gtle, F. Cyclophane Chemistry; Wiley: Chichester, 1993. (c)
For a series of multiply bridged and sterically constrained cyclophanes,
see: Song, Q.; Ho, D. M.; Pascal, R. A., Jr. J. Am. Chem. Soc. 2005, 127,
11246-11247.
(14) (a) Mart´ın, N.; Pe´rez, I.; Sa´nchez, L.; Seoane, C. J. Org. Chem. 1997, 62,
870-877. (b) Christensen, C. A.; Bryce, M. R.; Batsanov, A. S.; Becher,
J. Org. Biomol. Chem. 2003, 1, 511-522. (c) D´ıaz, M. C.; Illescas, B. M.;
Seoane, C.; Mart´ın, N. J. Org. Chem. 2004, 69, 4492-4499. (d) D´ıaz, M.
C.; Illescas, B. M.; Mart´ın, N.; Perepichka, I. F.; Bryce, M. R.; Levillain,
E.; Viruela, R.; Ort´ı, E. Chem. Eur. J. 2006, 12, 2709-2712. (e) D´ıaz, M.
C.; Illescas, B. M.; Mart´ın, N.; Stoddart, J. F.; Canales, M. A.; Jime´nez-
Barbero, J.; Sarova, G.; Guldi, D. M. Tetrahedron 2006, 62, 1998-2002.
(15) Godbert, N.; Bryce, M. R. J. Mater. Chem. 2002, 12, 27-36.
(18) Finn, T.; Bryce, M. R.; Batsanov, A. S.; Howard, J. A. K. Chem. Commun.
1999, 1835-1836.
(19) Godbert, N.; Batsanov, A. S.; Bryce, M. R.; Howard, J. A. K. J. Org. Chem.
2001, 66, 713-719.
(20) Christensen, C. A.; Batsanov, A. S.; Bryce, M. R.; Howard, J. A. K. J.
Org. Chem. 2001, 66, 3313-3320.
9
J. AM. CHEM. SOC. VOL. 128, NO. 32, 2006 10485