Published on Web 06/16/2006
Phosphorus Copies of PPV: π-Conjugated Polymers and
Molecules Composed of Alternating Phenylene and
Phosphaalkene Moieties
Vincent A. Wright, Brian O. Patrick, Celine Schneider, and Derek P. Gates*
Contribution from the Department of Chemistry, UniVersity of British Columbia,
2036 Main Mall, VancouVer, British Columbia, Canada V6T 1Z1
Received February 10, 2006; Revised Manuscript Received April 26, 2006; E-mail: dgates@chem.ubc.ca
Abstract: A new class of π-conjugated macromolecule, poly(p-phenylenephosphaalkene) (PPP), is reported.
PPPs are phosphorus analogues of the important electronic material poly(p-phenylenevinylene) (PPV) where
PdC rather than CdC bonds space phenylene moieties. Specifically, PPPs [sC6R4sPdC(OSiMe3)sC6R′4s
C(OSiMe3)dPs]n (1: R ) H, R′ ) Me; 11: R ) Me, R′ ) H) were synthesized by utilizing the Becker
reaction of a bifunctional silylphosphine, 1,4-C6R4[P(SiMe3)2]2, and diacid chloride 1,4-C6R′4[COCl]2. Several
model compounds for PPP are reported. Namely, mono(phosphaalkene)s RsPdC(OSiMe3)sR′ (4: R )
Ph, R′ ) Mes; 7: R ) Mes, R′ ) Ph), C-centered bis(phosphaalkene)s RsPdC(OSiMe3)sC6R′4s
C(OSiMe3)dPsR (5: R ) Ph, R′ ) Me; 8: R ) Mes, R′ ) H), and P-centered bis(phosphaalkene)s Rs
C(OSiMe3)dPsC6R′4sPdC(OSiMe3)sR (6: R ) Mes, R′ ) H; 10: R ) Ph, R′ ) Me). Remarkably, selective
Z-isomer formation (i.e., trans arylene moieties) is observed for PPPs when bulky P-substituents are
employed while E/Z-mixtures are otherwise obtained. X-ray crystal structures of Z-7, Z,Z-8, and Z,Z-10
suggest moderate π-conjugation. The twist angles between the PdC plane and unsubstituted arenes are
16°-26°, while those between the PdC plane and methyl-substituted arenes are 59°-67°. The colored
PPPs and their model compounds were studied by UV/vis spectroscopy, and the results are consistent
with extended π-conjugation. Specifically, weakly emissive polymer E/Z-1 (λmax ) 338 nm) shows a red
shift in its absorbance from model E/Z-4 (λmax ) 310 nm), while a much larger red shift is observed for
Z-11 (λmax ) 394 nm) over Z-7 (λmax ) 324 nm).
Introduction
has been a growth of activity in π-conjugated phosphorus
macromolecules because of their potential electronic applica-
The development of new polymers incorporating inorganic
elements into the main chain is a challenging research frontier
that promises to lead to materials with exciting properties and
possible specialty applications.1,2 Inorganic macromolecules
composed of phosphorus atoms in the backbone have attracted
considerable attention with the polyphosphazenes (A) being the
most important class (see Chart 1).3 Recently, major advances
in the breadth of phosphorus polymer chemistry have been made
including the synthesis of poly(ferrocenylphosphine)s (B),4
polythionylphosphazenes (C),5 polyphosphinoboranes (D),6 and
poly(methylenephosphine)s (E).7 In the past few years, there
tions.8 Perhaps the most thoroughly investigated of these are
the polyphospholes. Although the parent polyphosphole is not
known, several oligomeric and polymeric species containing
phospholes have been reported (F).9-18 The fabrication of the
(6) See, for example: Dorn, H.; Singh, R. A.; Massey, J. A.; Lough, A. J.;
Manners, I. Angew. Chem., Int. Ed. 1999, 38, 3321-3323. Dorn, H.; Singh,
R. A.; Massey, J. A.; Nelson, J. M.; Jaska, C. A.; Lough, A. J.; Manners,
I. J. Am. Chem. Soc. 2000, 122, 6669-6678. Dorn, H.; Rodezno, J. M.;
Brunnho¨fer, B.; Rivard, E.; Massey, J. A.; Manners, I. Macromolecules
2003, 36, 291-297. Denis, J.-M.; Forintos, H.; Szelke, H.; Toupet, L.;
Pham, T.-N.; Madec, P.-J.; Gaumont, A.-C. Chem. Commun. 2003, 54-
55. Clark, T. J.; Rodenzo, J. M.; Clendenning, S. B.; Aouba, S.; Brodersen,
P. M.; Lough, A. J.; Ruda, H. E.; Manners, I. Chem.sEur. J. 2005, 4526-
4534.
(1) Mark, J. E.; Allcock, H. R.; West, R. Inorganic Polymers, 2nd ed.; Oxford
University Press: 2005.
(7) Tsang, C.-W.; Yam, M.; Gates, D. P. J. Am. Chem. Soc. 2003, 125, 1480-
1481.
(2) Manners, I. Angew. Chem., Int. Ed. Engl. 1996, 35, 1603-1621.
(3) Allcock, H. R. Chemistry and Applications of Polyphosphazenes; John
Wiley & Sons: New Jersey, 2003.
(4) See, for example: Withers, H. P.; Seyferth, D. Organometallics 1982, 1,
1275-1282. Withers, H. P.; Seyferth, D. Organometallics 1982, 1, 1283-
1288. Honeyman, C. H.; Foucher, D. A.; Dahmen, F. Y.; Rulkens, R.;
Lough, A. J.; Manners, I. Organometallics 1995, 14, 5503-5512. Hon-
eyman, C. H.; Peckham, T. J.; Massey, J. A.; Manners, I. Chem. Commun.
1996, 2589-2590. Peckham, T. J.; Massey, J. A.; Honeyman, C. H.;
Manners, I. Macromolecules 1999, 32, 2830-2837.
(5) See, for example: McWilliams, A. R.; Gates, D. P.; Edwards, M.; Liable-
Sands, L. M.; Guzei, I.; Rheingold, A. L.; Manners, I. J. Am. Chem. Soc.
2000, 122, 8848-8855. Chunechom, V.; Vidal, T. E.; Adams, H.; Turner,
M. L. Angew. Chem., Int. Ed. 1998, 37, 1928-1930. Gates, D. P.;
McWilliams, A. R.; Manners, I. Macromolecules 1998, 31, 3494-3497.
Liang, M.; Manners, I. J. Am. Chem. Soc. 1991, 113, 4044-4045.
(8) Hissler, M.; Dyer, P.; Re´au, R. Coord. Chem. ReV. 2003, 244, 1-44.
(9) Deschamps, E.; Ricard, L.; Mathey, F. Angew. Chem., Int. Ed. Engl. 1994,
33, 1158.
(10) Mao, S. S. H.; Tilley, T. D. Macromolecules 1997, 30, 5566-5569.
(11) Hay, C.; Fischmeister, C.; Hissler, M.; Toupet, L.; Re´au, R. Angew. Chem.,
Int. Ed. 2000, 39, 1812-1815.
(12) Hay, C.; Hissler, M.; Fischmeister, C.; Rault-Berthelot, J.; Toupet, L.;
Nyula´szi, L.; Re´au, R. Chem.sEur. J. 2001, 7, 4222-4236.
(13) Morisaki, Y.; Aiki, Y.; Chujo, Y. Macromolecules 2003, 36, 2594-2597.
(14) Hay, C.; Fave, C.; Hissler, M.; Rault-Berthelot, J.; Re´au, R. Org. Lett.
2003, 5, 3467-3470.
(15) Fave, C.; Hissler, M.; Ka´rpa´ti, T.; Rault-Berthelot, J.; Deborde, V.; Toupet,
L.; Nyula´szi, L.; Re´au, R. J. Am. Chem. Soc. 2004, 126, 6058-6063.
(16) Baumgartner, T.; Neumann, T.; Wirges, B. Angew. Chem., Int. Ed. 2004,
43, 6197-6201.
(17) Neumann, T.; Dienes, Y.; Baumgartner, T. Org. Lett. 2006, 8, 495-497.
9
8836
J. AM. CHEM. SOC. 2006, 128, 8836-8844
10.1021/ja060816l CCC: $33.50 © 2006 American Chemical Society